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The Interaction and Pharmacological Modulation of the Cardiorespiratory 

Responses to Primary Thoracic Blast Injui^, Haemorrhage and Resuscitation. 

Marina Annette Sawdon 

Blast injuries represent a problem for civilian and military populations. The response to 

thoracic blast injury involves a reflex bradycardia, hypotension and apnoea. Casualties 

who have suffered a blast injury are likely to receive morphine as an early treatment, 

and may go on to suffer a haemorrhage, thus requiring fluid resuscitation. Aims of this 

thesis included determination of the effect of blast injury on the response to 

haemorrhage and whether these responses or their interaction are modified by morphine, 

and to compare the cardiovascular effects of early and late resuscitation with different 

solutions following blast injury and haemorrhage. Early cessation of the blast-induced 

apnoea is important if the patient is to adequately maintain arterial oxygen tensions and 

thus prevent the development of tissue hypoxia and a subsequent secondary 

inflammatory response. Therefore, the final aim of this thesis was to determine whether 

doxapram could shorten the duration of apnoea induced by thoracic blast. 

Results confirmed that the response to thoracic blast injury involves a bradycardia, 

hypotension and apnoea, and also a vasodilation and a reduction in blood tlow in the 

femoral vascular bed. New findings from this thesis show that thoracic blast augments 

the bradycardia and hypotension seen during haemorrhage and that morphine attenuates 

this effect. The hypovolemic blast-injured patient may be resuscitated early or late 

after haemorrhage with blood, 0.9% saline, colloids (modified gelatin and hydroxyethyl 

starch) hypertonic saline or hypertonic/hydroxyethyl starch. These fluids restored blood 

pressure and femoral blood flow to pre-haemorrhage levels for at least 30 minutes. 

However, resuscitation with hypertonic saline/de>ttran was shown to be deleterious 

following blast injury and haemorrhage as blood pressure and femoral blood flow was 

not maintained for longer than 5 minutes following resuscitation with this fluid. The 

blast-induced apnoea and hypotension can be significantly attenuated by doxapram 

immediately following blast injury. This respiratory stimulant may also result in an 

improvement in ventilation/perfusion matching in the lungs and thus better tissue 

oxygenation, as administration of doxapram resulted in an improvement in the indices 

of metabolic acidosis. The new information gained from the work covered by this thesis 

could potentially lead to better treatment of the blast-injured victim. 
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1. Introduction 

1.1 The History of Blast Injuries 

Blast injuries were first described in 1768 in an account by Jars (M. Jars) relating to a 

miner who died in an explosion (Clemedson, 1956; Maynard et al. 1997). Further 

detailed descriptions resulted from the First World War when men were frequently 

found dead in areas of an explosion with no external signs of injury, often with 

bloodstained fluid coming from the nose or mouth (see Zuckerman et al. 1940). Interest 

in the subject of blast injuries increased following similar reports during The Spanish 

Civil War (Clemedson, 1956; Zuckerman et al 1940; Williams, 1942) and the Second 

World War (Clemedson, 1956). Unfortunately almost no post mortem examinations 

were carried out on these casualties. However, experimental work investigating the 

effects of explosions in animals revealed rupture of the alveoli as well as haemorrhages 

and bruising in the lungs upon post mortem examination of these animals (e.g., Hooker, 

1924; and 2 reports from Crile 1917 and Hill 1918, commented upon in Williams, 

1942). 

The risk of blast injuries is still a threat today with increasing acts of terrorism. In 1995 

a terrorist bombing in Oklahoma City, USA killed or injured 869 people (Mallonee et 

al. 1996). Thirteen of the 168 that died (Mallonee et al 1996) had massive internal 

pathological chest conditions with no lethal external signs of injuries (reported in Irwin 

et al 1997). Of the survivors, 13 admitted to hospitals had pulmonary contusion, 

pneumothorax, or went on to develop Adult Respiratory Distress Syndrome (Mallonee 

et al. 1996). Other survivors were reported to be hypotensive following the blast, again 

with no external signs of injury (reported in Irwin et al 1997). 

Blast injuries from explosions can be classified into 3 main categories (Cooper, 1996; 

Ripple & Phillips, 1997): 

1. Primary blast injury occurs when the blast wave interacts with the body causing a 

small but rapid displacement of the body wall. The blast wave travels through the 

body causing damage particularly at air:water interfaces such as the lung, ear, and 

bowel. Often there are no external signs of this type of injury. 

2. Secondary blast injury occurs when fragments or debris caused by the explosion 

collide with the body, often causing penetrating injuries. 



3. Tertiary blast injuries result from gross body displacement or Umb avulsions 

following fracture by a shock wave. 

This thesis will focus on the physiological effects of primary blast injuries to the thorax, 

pharmacological modulation of the response, and how the response to the injury 

modifies reflex responses to other insults such as haemorrhage. 

1.2 Physics of Blast 

A blast wave originates from a detonation or explosion. These explosions may occur 

naturally for instance when a volcano erupts or from lightening, or may be accidental 

(e.g., gas or dust cloud explosions or from an explosion from pressurised gas 

containers) or from intentional physical, chemical or nuclear explosions (Iremonger et 

al. 1997). Energy is released upon explosion and an intense shock wave is generated in 

the air surrounding the charge. Atmospheric pressure rises to its peak blast pressure 

almost instantaneously, between 0.5 and 0.1 milliseconds after detonation. This positive 

pressure phase with a duration of approximately 2-3 milliseconds (Irwin et al. 1997) is 

then followed by a negative, sub-atmospheric pressure phase of longer duration 

(Williams et al. 1942. See Figure 1.1). It is the positive pressure phase that is thought to 

be more injurious (Clemedson, 1956). Although the reason for this is not clearly defined 

it is thought to be due to rapid acceleration of the thorax as the blast wave interacts with 

the body (Cooper et al. 1991). The shock wave travels with the velocity of sound 

(Cooper et aL 1983; Clemedson et al. 1956), with its peak pressure and impulse (time in 

positive phase) decreasing exponentially therefore rapidly losing its injurious power 

(Clemedson et al. 1956; see section 1.3). 
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Figure 1.1 Schematic diagram of an idealised shock front resulting from the 
detonation of an explosive under free-field conditions (reproduced with 
permission from Cooper et al 1983). 

1.3 Mechanism of Injury from a Blast Wave 

Three possible theories to explain the mechanism whereby a blast wave causes injury 

(particularly lesions in the lung) were put forward by Zuckerman in 1940: 

1. Reduction in intra-alveolar pressure due to the sub-atmospheric pressure phase of 

the blast wave. This could cause sudden expansion and rupture of the pulmonary 

capillaries. 

2. The positive pressure phase forcing air down the airways causing distension of the 

lungs (J. Barcrofl, 1941 unpublished. Reported in Maynard a/. 1997). 

3. Direct impact of the blast wave with the chest wall leading to sudden compression 

of the lung (Hooker, 1924). 

The first and second theory were discounted when blast experiments on animals showed 

that protection of the chest with a steel cylinder, whilst leaving the head exposed with 

an open airway, produced no lung damage, when in unprotected animals blast led to 

severe damage or death (Zuckerman, 1940). However, it has been suggested that the 

negative pressure component of the blast wave could increase the severity of the lung 

damage produced by the positive pressure phase (Latner, 1942), but the extent of this is 

not thought to be significant (Maynard et al. 1997). 

Further experimental studies have now shown that the mechanism of injury by a short-

duration blast wave is as a consequence of a coupling of the blast wave with the body 

wall. The pressure wave is propagated through the body, reportedly at about 650 



metres.sec"' (Clemedson, 1956), and produces pressure differentials at air:water 

interfaces (such as in the lungs, ear and bowel) which lead to shear and stress waves 

which disrupt air:tissue interfaces and can also displace organs (Cooper et al. 1991; 

Cooper et al. 1997). The probability of developing primary blast injury depends upon 

the magnitude of the peak overpressure and the duration of this positive pressure phase 

(Clemedson, 1956; Cooper e/a/. 1983; Cooper a/. 1997). 

1.4 Organ Damage due to Blast Exposure 

Exposure to overpressure due to air blast can result in a condition known as blast lung 

(Cooper et al. 1983; Maynard et al. 1997). The features of blast lung are pulmonary 

oedema due to disruption of capillary fluid movement in the pulmonary circulation (see 

Chapter 4a, section 4a. 1) as the alveolar-capillary diffusion barrier is disrupted, and 

pulmonary contusions due to haemorrhaging into the alveolar space, again as the 

alveolar-capillary diffusion barrier is disrupted. The result is insufficient gas exchange 

and a low arterial oxygen tension (Cooper et al. 1983). Before looking in more detail at 

the histological damage to the lungs following a primary blast injury, the following will 

briefly describe possible damage that could occur to other organs (both air and non-air 

containing organs) as a result of direct exposure to a blast wave in air. 

1.4.1 Damage to non-air-containing organs 

Damage to solid organs due to blast injury are not common and injuries to the pancreas, 

kidney and liver for example, are more consequential due to the haemorrhage and 

haemoperitoneum that can result from damage to these organs following blast exposure 

(Gordon-Taylor, 1942), 

Studies of blast exposure to rabbits found no changes in the brain (Hunter, 1941) until 

higher pressures were achieved, Pial haemorrhages could then be seen, in addition to 

haemorrhaging into the ventricles. Lesions in the grey and white matter were not found 

(Hunter, 1941) but in monkeys and rabbits zones of oedema could be seen around the 

central canal of the spinal cord particularly in the thoracic region (Hunter, 1941). 



Although a bradycardia is almost always present after thoracic blast injury this may not 

be due to a direct effect on the heart. The threshold for producing cardiac contusion has 

been shown to be higher than that for producing pulmonary contusion (Clemedson, 

1956). In studies where blast pressure was sufficient to cause cardiac damage 

pericardial haemorrhages were seen along the coronary vessels towards the apex of the 

heart anteriorly and posteriorly and no leakage of blood was seen in the pericardial sac 

(Cameron et al. 1942). However, these experiments were carried out under water and 

animals showing cardiac damage were within 40yards of the charge where mortality 

rates were 80-100%. Other studies also showed direct lesions to the heart in severe blast 

injury (see Clemedson, 1956). These lesions consisted mainly of myocardial 

haemorrhages, ruptured muscle bundles and myocardial infarction thought to be due to 

air emboli originating in damaged pulmonary vessels. Clemedson reported (1956) some 

of the most frequent changes seen on the electrocardiogram are a flattening of the QRS 

complex, indicative of ventricular conduction problems, and prolonged P-R interval, 

which is consistent with an increase in vagal activity to the atrioventricular node, 

leading to a slowing down of conduction through the node. A recent study by Harban 

and colleagues (2001) investigated the effects of thoracic blast injury on cardiac 

function in the anaesthetised pig. It was concluded that blast injury caused "an 

immediate and sustained reduction in myocardial ftinction", however, the first 

recordings were not carried out until 30 minutes after the blast had occuired. In contrast 

to all this, Hooker found no evidence of a reduction in heart function after air blast in 

experimental animals, however, it is pointed out that "no particular attention was paid to 

cardiac funcfion" (Hooker, 1924). 

1.4,2 Damage to air-containing organs 

Organs containing gas or air are particularly susceptible to damage due to air blast as 

the blast wave passes through the higher density fluid-containing tissues and into the air 

or gas cavity which has a lower density and as such, a differing acoustic impedance. 

The stress wave is then reflected as a tensile wave and leads to damage and disruption at 

the air:tissue interface (Maynard et al. 1997). It has been said that the lungs are more 

vulnerable to blast-induced lesions than the abdomen (Gordon-Taylor et al 1942; 

Hunter, 1941) and perhaps this is due to the many air:water interfaces within the lung 

parenchyma. However, abdominal lesions do occur and the sections of gastrointestinal 
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tract that suffer the most lacerations and perforations are the large intestine (Hunter, 

1941), particularly the transverse and sigmoid colon, with the ascending colon, rectum 

and caecum also being affected (HuUer et al. 1970; Guy et al. 1998). Trapped gas 

pockets within the GI tract may become compressed as the blast wave travels through 

the abdomen. Upon re-expansion or implosion of the gas "bubble" gut perforations may 

ensue. The small intestine and stomach can also be subjected to blast-induced damage 

(Gordon-Taylor et al. 1942) and subserosal haemorrhages are commonly found (Huller 

etal. 1970). 

Another susceptible air-containing organ is the ear. The fragile tympanic membrane is 

very frequently ruptured (Hooker, 1924; Williams, 1942), sometimes blood may be 

found in the auditory canal (Hooker, 1924) and the eardrum may also become damaged 

by the blast wave (Williams, 1942). 

The principle pathological finding following air blast injury is damage to the pulmonary 

tissue (Clemedson, 1956). 

1.4.3 Macroscopic damage to the lungs 

Pulmonary haemorrhages are one of the prominent features of blast lung (Williams, 

1942; Clemedson, 1956; Zuckerman, 1940; Cooper et al 1983; Maynard et al. 1997). 

The distribution pattern of the haemorrhagic lesions seem to be more concentrated in 

areas adjacent to bone such as at the costo-phrenic angles (Maynard et al. 1997; 

Williams, 1942), around the mediastinum where the stress waves can be reflected 

(Maynard et al. 1997; Cooper et al 1991) and following the Hnes of the ribs (Williams, 

1942). However, rib fractures are rare and are often associated with death (Maynard et 

al. 1997) possibly as a consequence of a severe blast injury. The haemorrhagic lesions 

can vary from slight spotting on the surface of the lung tissue, to continuous lesions 

often involving whole lobes (Zuckerman, 1940; Maynard et al. 1997). It is interesting to 

note that often the right lungs show more damage than the left (Cameron, 1942; 

Williams, 1942). Other reported pathological findings include air emboli from the 

damaged pulmonary vessels (Cooper et al 1983; Clemedson, 1956), pneumothoraces 

and haemopneumothoraces (Maynard et al. 1997) as well as pulmonary oedema 



{Cooper el al. 1983; Clemedson, 1956; Guy a/. 1998, Brown t-/a/. 1993; Zuckerman, 

1940). 

1.4.4 Microscopic damage to the lungs 

Rupture o f the alveolar walls can be seen upon microscopic examination o f the lung 

parenchyma (Williams, 1942; Clemedson, 1956; Zuckerman, 1940; Cooper a/. 1983; 

Maynard et al. 1997). Due to their close proximity, this is often associated with 

haemorrhaging from disrupted pulmonary capillaries (Maynard et al. 1997) although the 

actual capillary damage is more diff icuh to see in light microscopy (Cooper et al. 1983). 

Haemorrhage may be seen in the terminal bronchioles and in severe blast injury may 

also be seen in the walls o f the bronchi or the larger blood vessels (Cooper et al. 1983; 

Maynard et al. 1997). The epithelial linmg of the bronchioles can become damaged or 

even stripped, and a loss of its ciliated surface has also been observed (Maynard et al. 

1997). The pulmonary lymphatic vessels have also been noted to be dilated with fluid 

and blood after blast injury (Maynard et al. 1997). The origin o f the blood is likely to be 

f rom disrupted pulmonary capillaries and the fluid possibly as a result of an attempt to 

rectify the ensuing pulmonary oedema (see Chapter 4a, section 4a. 1). 

1.4.5 i/ltrastnictural damage to the kings 

Following blast injury in anaesthetised rats in 1993, Brown and colleagues noted 

marked pinocytosis in the endothelial and epithelial cells o f the pulmonary tissue under 

electron microscopy. It was postulated that this was an early compensatory mechanism 

for the increase in capillary permeability following blast injury. No damage was 

reported in the cellular organelles (Brown et al. 1993). 



1.4.6 Scoring lung damage 

The extent and type o f lung damage following blast injury was classified and a scoring 

system was devised to allow pathological evaluation o f the severity of primary blast 

injury (Dodd et al. 1997): 

0 = no lesions 

1 = 0-10% of the lung shows traces of petechial haemorrhagic lesions 

2 = 11-30% of the lung is damaged and may show slight ecchymoses. This is 

considered a moderate blast injury 

3 = 31-60%) of the lung is damaged showing confluent ecchymoses. This is 

considered a severe blast injury 

4 = 61-100%) of the lung is involved, with diffuse ecchymoses being evident. 

In addition, post mortem lung weight can be used as a tool to evaluate the severity of 

lung damage. Lung weight has been shown to be increased following primary blast 

injury as a result o f pulmonary oedema and haemorrhage in the lung tissue (Maynard et 

al. 1997, Guy et al. 1998), and correlates well to the severity of blast injury (Elsayed et 

al. 1997). 

1.5 The Mechanism of the Response to Primary Blast Injury 

The response to primary thoracic blast injury involves a triad o f bradycardia, 

hypotension and apnoea followed by rapid shallow breathing (Clemedson, 1949; Jaffm 

et al. 1987; Irwin et al. 1997; Krohn et al. 1942; Guy et al. 1998). This pattern of 

response has been shown to be present after thoracic but not abdominal blast exposure 

(Guy et al. 1998). It has been suggested that the response is a reflex involving the vagus 

nerve as bilateral vagotomy in rabbits reduced the rapid shallow breathing after thoracic 

blast injury (Krohn et al. 1942), and combined cervical vagosympathectomy and 

atropine abolished the bradycardia and hypotension (Irwin el al. 1999). However, this 

study was not designed to allow distinction between afferent and efferent pathways. A 

more recent study confirmed that the response to thoracic blast injury was indeed due to 

a reflex with the afferent and/or efferent pathways carried in the vagus nerve as a 

cervical vagotomy abolished the bradycardia and apnoea, and attenuated the 

hypotension (Ohnishi et al. 2001). In addition, the bradycardia was markedly attenuated 



by the muscarinic acetylcholine receptor antagonist atropine (Ohnishi et al. 2001), 

again, showing that the efferent pathway mediating the bradycardia is carried in the 

vagus nerve. Further evidence to suggest this was a reflex and not just due to cardiac 

damage is the latency o f onset o f the cardiorespiratory response. The bradycardia was 

evident after approximately 4 seconds, while the hypotension had a latency o f onset of 

approximately 2 seconds after blast (Ohnishi et al. 2001). Had the response been due to 

direct cardiac damage from the blast the response would be instantaneous. 

The only currently known reflex that could be responsible for ehciting the full triad of 

the response to primary thoracic blast injury is the pulmonary 'J ' reflex. The response 

elicited by activation o f the pulmonary 'J ' reflex involves a bradycardia, hypotension, 

apnoea followed by rapid shallow breathing and vasodilation in the femoral vascular 

bed in the anaesthetised cat (Daly & Kirkman, 1988). In this respect the pattern o f 

response is identical to that following thoracic blast injury. The pulmonary 'J ' reflex 

can be activated by stimulation o f the juxtapulmonary capillary receptors within the 

lung parenchyma. These so-called 'J ' receptors are pulmonary afferent C-fibre nerve 

endings which can be stimulated either pharmacologically using a 5-Hydroxytryptamine 

(5HT) agonist such as phenylbiguanide (PBG; Daly et al. 1988) or mechanically by 

pulmonary oedema (Paintal, 1969). It is known that pulmonary oedema is a feature o f 

thoracic blast injury (Guy et al. 1998). 

The afferent hmb of the Pulmonary 'J ' Reflex (the pulmonary C-fibres), is carried in the 

vagus nerve (Coleridge et al. 1984) and although the afferent pathway o f the response to 

thoracic blast injury is currently unknown, the efferent limb to the heart mediating the 

bradycardia, and that mediating the apnoea in both reflexes, is also carried in the vagus 

nerve (Daly et al. 1988; Ohnishi et al. 2001). The efferent limb to the vasculature 

mediating the vasodilation and hypotension in the pulmonary 'J ' reflex is carried in the 

sympathetic nerves and involves an inhibition o f sympathetic outflow (Daly et al. 

1988). However, it is currently unknown whether this is also true for the response to 

thoracic blast injury. In fact evidence against the possibility o f these two reflexes being 

part o f the same reflex arc comes from the work o f Dr. M . Ohnishi as part of his 

research towards a Ph.D. thesis (currently unpublished). 

One o f the studies carried out by Dr. Ohnishi and his colleagues aimed to determine 

whether thoracic blast leads to a reduction in peripheral vascular resistance via 



sympathoinhibition. This was done by administration o f a noradrenergic blocking agent 

guanethidine. Guanethidine prevents reflex changes in sympathetic nerve activity whilst 

maintaining sufficient vascular tone to allow the expression o f any non-sympathetic 

noradrenergic vasodilation. Thus i f the blast-induced vasodilation was due to 

sympathoinhibition, as is the vasodilation due to the pulmonary 'J ' reflex, then it would 

be abolished by guanethidine. However, the results o f this study showed that 

guanethidine failed to block the vasodilation in the skeletal muscle vascular bed after 

blast, and thus it was concluded that the efferent pathway mediating the vasodilator 

response to thoracic blast injury was not carried in the sympathetic nerves to the 

vasculature. Nevertheless, guanethidine was reported to attenuate the recovery o f 

arterial blood pressure following blast injury in this study, possibly indicating that 

following thoracic blast injury there is a sympathetically-mediated vasoconstriction in 

other vascular beds such as the vital organs and/or an increase in sympathetic outflow to 

the heart contributing to the recovery o f blood pressure. A haemodynamic redistribution 

of blood f low away from vital/metabolically active organs has important implications 

for the development of organ ischaemia, but this wi l l be discussed in Chapter 3, section 

3.4. 

Further evidence against the theory that the reflex response to pulmonary C-fibre 

activation and the response to thoracic blast injury share the same reflex arc again came 

from studies carried out by Ohnishi and colleagues (unpublished Ph.D. thesis). 

Ondansetron is a 5 H T 3 receptor antagonist and the pulmonary 'J ' reflex can be elicited 

by 5 H T 3 agonists such as PBG (Daly & Kirkman, 1988). Ondansetron wi l l block the 

response elicited by PBG (M. Ohnishi, unpublished Ph.D. thesis). Ohnishi and 

colleagues therefore postulated that i f the two reflexes (pulmonary 'J ' reflex and the 

reflex response to thoracic blast injury) share the same afferent pathway then systemic 

administration of ondansetron should block the response to thoracic blast injury. The 

results, however, showed no significant difference in the response to thoracic blast 

following administration o f ondansetron from the control group (M. Ohnishi, 

unpublished Ph.D. thesis). 

Administration of a centrally-acting 5 H T receptor antagonist, methiothepin, also failed 

to block the triad response to thoracic blast. Indeed it was shown to potentiate the 

bradycardia and apnoea (M. Ohnishi, unpublished thesis), in contrast to its blockade of 

the bradycardia elicited by a PBG-induced pulmonary 'J ' reflex (Bogle et al. 1990). 
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The combined results o f the work carried out by Ohnishi et al. suggest that the reflex 

response to thoracic blast and that to pulmonary C-fibre activation do not share the 

same afferent or central nervous pathway and thus it is unlikely that they are the same 

reflex. There are, however, still a number o f other reflexes which could be possible 

candidates for at least part of the response, and in combination, could be responsible for 

the whole response to thoracic blast injury: 

• the cardiac afferent C-fibre reflex 

• the arterial baroreceptor reflex 

• and activation o f the pulmonary stretch receptors (the Hering-Breuer reflex) 

The role o f these reflexes in the response to thoracic blast warrants fijrther investigation, 

and are considered further in sections 3.1.1.2, 3.1.1.1 and 6.1.1. 

1.6 Clinically Relevant Questions and Aims of the Thesis 

Blast casualties may often sustain blood loss as a consequence of their injuries (Cooper 

et al. 1983). The pattern of response to blood loss in the absence of a blast injury is 

biphasic (Barcroft et al. 1944; see Chapter 3, section 3.1), with phase I maintaining 

blood pressure by the action o f the baroreflex (Secher & Bie, 1985; Litf le et al. 1989). It 

seems that after a blast injury baroreceptor reflex sensitivity may be modulated since the 

blast induced hypotension is associated with a bradycardia rather than a tachycardia 

which would be expected were the baroreflex functioning normally. This has potential 

clinical implications as patients with a reduced baroreflex sensitivity may experience 

greater falls in blood pressure for a given blood loss. I f baroreflex sensitivity were 

altered fol lowing a blast injury then this may alter the response to a subsequent 

haemorrhage, in particular phase I as this is mediated by the baroreflex. This could 

potentially lead to a clinician failing to diagnose an internal haemorrhage in a blast 

victim as the usual pattern o f response to haemorrhage may be altered. This could have 

potentially fatal consequences and so one o f the aims o f this thesis (addressed in 

Chapter 3) wi l l be to determine the pattern of response to blood loss following primary 

thoracic blast injury. 

As part o f the treatment of a blast casualty morphine may be administered as an 

analgesic since this is standard military practice were service personnel are issued with 

morphine auto-injecters for use in the case of injury. Morphine is known to attenuate the 
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vagally-mediated reflex bradycardia seen in the second phase o f the response to 

haemorrhage alone (Ohnishi et al. 1997), and the vagally-mediated bradycardia 

associated with activation o f the pulmonary/cardiac afferent C-fibres (Ohnishi et al. 

1999a). However, morphine has no effect on the vagally-mediated bradycardia induced 

by blast, but augments the apnoea and delays the recovery o f blood pressure (Ohnishi et 

al. 1999b). Therefore a further aim addressed in Chapter 3 is to look at the effects of 

administering morphine to a blast injured victim whom w i l l also go on to suffer blood 

loss. 

The next step in the treatment o f a hypovolemic blast victim would be to restore 

plasma volume by f luid resuscitation. There are several reasons why the response to 

f luid resuscitation after blood loss may be different in blast-injured victims compared to 

those suffering haemorrhage in the absence o f blast. The direct mechanical damage 

caused by the blast can increase capillary permeability and it is known that blast injuries 

lead to the development o f pulmonary oedema and a reduction in Pa02 (Guy et al. 

1998). This hypoxaemia w i l l result in tissue hypoxia and may trigger a secondary 

inflammatory response (see Chapter 4a, section 4a.4) and augment an already 

estabhshed pulmonary oedema. Some fluids e.g. crystalloids have been shown to 

increase the degree o f pulmonary oedema (Fulton et al. 1973; Richardson et al. 1974; 

Tranbaugh et al. 1982). However, others such as hypertonic solutions have 

demonstrated anti-inflammatory properties (Corso et al. 1999; Nolte et al. 1992) and so 

have the potential to reduce pulmonary oedema. The optimum time to administer fluids 

may be later rather than sooner as resuscitation too soon after haemorrhage has been 

reported to increase the rate, volume and duration o f haemorrhage (Sakles et al. 1997; 

Bickell et al. 1992, Krausz et al. 1992; Marshall et al. 1997), as well as increasing 

mortality (Bickell et al. 1992; Krausz et al. 1992; Marshall et al. 1997). Therefore one 

of the aims o f this thesis is to address the issue o f fluid resuscitation following blast 

injury and haemorrhage. Along wi th determining the response to fluid resuscitation in 

these subjects, the type o f fluid as well as the timing o f the administration of the fluid 

w i l l be assessed (see Chapters 4a, 4b and 5). 

Finally, the bradycardia and apnoea can be prevented and the hypotension attenuated by 

vagotomy (Ohnishi et al. 2001). In addition, the bradycardia can be blocked 

pharmacologically using atropine. However, no pharmacological means of attenuating 

the hypotension and apnoea is currently known. It is important clinically to attenuate the 
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hypotension in order to maintain adequate tissue perfusion, and attenuation of the 

apnoea would prevent the hypoxaemia, tissue hypoxia and thus secondary inflammation 

escalating the whole response. Doxapram is an analeptic (O'Connor et al 1996), that is 

it stimulates respiration (Uehara et at. 2000; De Villiers et al. 1998, Bairam et al. 1993; 

Peers et al. 1991) reducing the frequency and duration o f apnoea in humans (Yamazaki 

el al. 2001; Poets et al. 1999; Huon et al 1998) and animals (Bairam et al. 1992). 

Doxapram is also reported to have some pressor actions (Huon et al. 1998; Cote et al. 

1992). Therefore the effects o f doxapram on the cardiorespiratory response to thoracic 

blast injury w i l l be assessed in Chapter 6. 
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Methods 

This chapter describes the techniques common to all the studies throughout this thesis. 

Any additional techniques, and the protocol for the studies, can be found in the relevant 

chapters. 

The studies were conducted on male Wistar rats of the Harlan Olac strain, kept on a 12 

hour light/dark cycle and fed on Beekay standard rat and mouse diet (B & K Universal 

Ltd., UK) and allowed access to water ad lihitiim. 

Anaesthesia was induced in all animals with inhalation isoflurane (Abbott Laboratories 

Ltd. UK; 3.5% in O2/N2O, FIO2 = 0.5) in an anaesthetising chamber (Fluorovac, 

International Market Supplies, UK). Once the criteria indicating a surgical level of 

anaesthesia were reached, i.e., when locomotor activity ceased, postural muscle tone and 

the righting reflex was lost, anaesthesia was then maintained by deliveiy of 2.5% 

isoflurane in 0.4L 02.min"', via a co-axial anaesthetic delivery/scavenging system and a 

nose cone (Fluovac™, International Market Supplies, U K ) . The concentration of 

isoflurane was adjusted to maintain a surgical level of anaesthesia whereby there was no 

spontaneous movement, righting reflex or withdrawal to noxious foot pinch. 

2.1 Surgical Preparation and Physiological Measurements 

In each rat a cannula (2FG, Portex Ltd. , UK) was inserted into the ventral tail artery and 

advanced until its tip lay in the abdominal aorta. Arterial blood pressure was monitored 

via this cannula using a strain gauge manometer (Sensonor 840™, SensoNor a s., 

Norway). Both lateral tail veins were cannulated (2FG, Portex Ltd., UK) for drug 

administration. Al l cannulae were initially filled with heparinised saline (20 iu.niL"' 

heparin, Monopar in™, CP Pharmaceuticals, UK, in 0.9% saline). 

The isoflurane was then discontinued and anaesthesia maintamed with 

alphadolone/alphaxolone (Saffan^'^\ Pitman-Moore, UK) administered by continuous 
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intravenous infusion (19-24 mg.kg '.h ') using an infusion pump (Harvard 22™, Harvard 

Apparatus Ltd. , UK) while the animals breathed air. 

For the blast and doxapram study only (Chapter 6), the trachea was exposed via a 

midline incision and a tracheal tube inserted via a tracheostomy (see Chapter 6, section 

6.2). 

For measurements of blood flow in the femoral vascular bed the left femoral artery was 

careftilly exposed so as not to cause any damage to the femoral nerve or vein, and a 

O.Sram transit time ultrasonic flow probe (Transonic Systems Inc., USA) was positioned 

around the left femoral artery. K - Y lubricating jelly (Johnson & Johnson, UK) was used 

as an acoustic coupler. Femoral vascular resistance was calculated as mean arterial blood 

pressure divided by femoral blood flow. The electrocardiogram was recorded using 

needle electrodes placed in the skin of the ventrum, and heart period measured from the 

electrocardiogram. All physiological variables were amplified and recorded using a 

computerised Data Acquisition System (MacLab 8s™, ADInstruments, UK) Body 

temperature was monitored using a thermocouple (Medical precision thermometer; Ellab 

Copenhagen D M 852) inserted via the anus and advanced until its tip lay 6-8 cm beyond 

the anal sphincter, and maintained at approximately 38°C throughout the study using a 

thermally-insulated operating mat and a heating lamp. Samples of arterial blood were 

withdrawn anaerobically from the ventral tail artery for blood gas/pH determination 

(ABL5™, Radiometer Ltd. Denmark). The volumes of blood removed for blood gas 

analyses were replaced by equal volumes o f isotonic colloid solution (Haemaccel). 

2.2 Blast Wave Generator 

The blast wave generator used has been described previously (Jaftln et al. 1987) This 

blast wave generator is a relatively small tabletop device that requires no explosives and 

permits the blast wave to be focused on a specific area of the body. Briefly, compressed 

air was used to generate a pressure of approximately ISOOpsi behind a solenoid-

controlled valve (see Figure 2.1). When the solenoid-controlled valve is released the 

stored compressed air is discharged into a 20-mm internal diameter blast nozzle. This 

pressure ruptures a 0.55mm-thick aluminium bursting disc mounted within the nozzle, 
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releasing the high pressure air. This results in a short duration blast wave (lasting less 

than 1ms; Jaffin et al. 1987), that leaves the device through the base of the nozzle and is 

directed at the animal lying below. Altering the distance between the movable blast 

nozzle and the animal lying underneath regulates the force of the blast wave administered 

to the subject. The animals were positioned supine under the blast apparatus. Those 

subjected to blast were positioned directly under the blast nozzle (which dehvers the 

blast wave to the animal), with the blast nozzle 3 .5 cm above the ventral surface of the 

thorax, midway between the sternal notch and the xiphoid, while those subjected to sham 

blast were not. Thus all animals could be subjected to the sound of the blast, but only 

those positioned directly under the nozzle were subjected to the physical effect of the 

blast wave. 

b 

o o 
o o 

Figure 2.1 Schematic diagram of the blast wave generator used in this thesis, a) air 
cylinder pressure dial (inlet pressure), b) isolation valve, c) pressure 
reservoir 150mL, d) working pressure dial 1500psi, e) vent valve, f ) rack 
to change distance between blast nozzle and the animal below, g) solenoid 
valve, h) blast nozzle, i) compressed air cylinder, j ) blast wave, k) 
anaesthetic pump (Harvard 22, Harvard Apparatus Ltd., UK) , 1) 
computerised Data Acquisition System (MacLab 8s , ADInstruments 
UK), m) solenoid release switch. For f l i l l explanation see text. 



At the end of the study, all animals were killed with an overdose o f 0.5mL of 60mg.mL"' 

sodium pentobarbitone (Sagatal, Rhone Merieux (Ireland) Tallaght, Dublin) administered 

intravenously. A post mortem was performed to assess whether any internal damage had 

occurred from the insertion of the intra-arterial (i.a.) cannula or the thermometer, and to 

macroscopically assess the state of the lungs and the fiallness o f the bladder. 

2.3 Statistical Analysis 

Mean arterial blood pressure was calculated as diastolic pressure plus one third of the 

pulse pressure. Data are presented as mean±standard error of the mean (SEM) unless 

indicated otherwise. Statistical comparisons were made using a 2-way analysis of 

variance for repeated measures (time) (SPSS/PC+ v4,0I) unless indicated otherwise, and 

the degrees of freedom adjusted using the Greenhouse-Geisser correction to minimise 

the risk of type 1 error (Ludbrook, 1994). Comparisons of non-repeated measurements 

between groups (baseline values, body weights) were made using one-way analyses of 

variance followed, where appropriate, by a Tukey post-hoc test (SPSS/PC+ v4.01). In all 

cases P<0.05 was considered statistically significant. 

Each study was conducted in accordance with the Animals (Scientific Procedures) Act, 

1986. 



The Effects of Haemorrhage and Morphine on the 

Cardiorespiratory Responses to Primary Thoracic Blast Injury in 

the Anaesthetised Rat 

3.1 Introduction 

Blast weapons are a threat to both military and civilian populations (Cooper et al. 1983) 

and they produce a spectrum of injuries, ranging from direct effects o f the blast wave, 

seen predominantly at gas-containing organs, to the displacement o f casualties with 

subsequent injury to all body systems (Cooper et al. 1983). 

Primary blast injury to the thorax produces a bradycardia, hypotension and apnoea 

(Krohn et al. 1942; Guy et al. 1998). This is a reflex response involving the vagus nerve 

(Irwin et al. 1999, Ohnishi et al. 2001). The afi^erent pathway mediating the apnoea and 

part of the hypotension is vagal since vagotomy abolishes the apnoea and attenuates the 

hypotension, and the efferent pathway mediating the bradycardia is also vagal since the 

fall in heart rate can be blocked with atropine (Ohnishi et al. 2001) It is unknown 

whether the afferent pathway mediating the bradycardia is also vagal. The reflex pathway 

involved in this response has not been fully characterised, although the response has 

many similarities to those induced by activation of the pulmonary afferent C-fibres (Daly 

& Kirkman, 1988; see Chapter 1, section 1.5). In addition, the persistence of 

hypotension combined with bradycardia after blast indicates that there may also be a 

modulation o f the arterial baroreceptor reflex following blast injury (Ohnishi et al. 2001). 

Blast injured casualties will often sustain haemorrhage as a consequence of their primary, 

secondary or tertiary blast injuries (Cooper et al 1983). The pattern of response to a 

progressive simple haemorrhage (blood loss in the absence of tissue damage and 

nociception) is biphasic (Barcroft et al. 1944), with an initial tachycardia and 

maintenance o f blood pressure via the arterial baroreceptor reflex (Secher & Bie, 1985; 

Litde et al. 1989; see section 3.1.1.1). As haemorrhage progresses, and blood loss 

exceeds about 30% of total blood volume, a second phase becomes apparent (see section 

3.1.1.2). This involves a vagally-mediated bradycardia, (which can be blocked by 

administration of atropine; Little et al. 1989) and a significant fall in blood pressure due 
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to a reduction in peripheral vascular resistance (Barcroft et al. 1944; Evans & Ludbrook, 

1990). This phase is due to the recmitment of one or more reflexes (Little, et al. 1989) 

Although the identity of their afferent limb is currenfly uncertain (Scherrer et al. 1990; 

Shen et al. 1990; Kirkman & Litfle, 1994, see section 3.1.1.2) some studies suggest the 

possible involvement, in the rabbit at least, o f cardiac vagal afferents as well as input 

from several brain pathways and circulating or neuronally released hormones (Evans et 

al. 2001; see section 3 .1.1.2). However, what is known is that phase I I o f the response 

to haemorrhage is not due to a failure of the baroreflex as sensitivity is still high at the 

onset of this second phase (Litfle et al. 1984). 

3.1.1 Mechanisms underlying the cardiova.scular response to a progressive simple 

haemorrhage. 

3.1,1.1 Phase I ; The arterial baroreceptor reflex 

The baroreflex is a negative feedback mechanism minimising moment to moment changes 

in arterial blood pressure (Cowley et al 1973). The baroreceptors are slowly adapting 

mechanoreceptors which respond to stretch of the arterial wall produced by the absolute 

level of blood pressure, and to the rate of change of pressure, i.e., pulse pressure. They 

are therefore rate sensitive (Angell-James & Daly, 1970). During a progressive simple 

haemorrhage (blood loss in the absence of any significant tissue damage) there is a 

reduction in venous return, a reduction in cardiac filling (end-diastolic volume) and 

hence, by Starling's law of the heart, a reducfion in stroke volume. This will lead to a 

reduction in arterial pulse pressure (see Little, Kirkman & Ohnishi, 1998), and thus an 

unloading of the baroreceptors (Angell-James & Daly, 1970) resuhing in a reflex 

tachycardia (due to sympathoexcitation and vagal inhibition) and a sympathetically-

mediated increase in total peripheral resistance. 

The baroreceptors are found in the aortic arch and the carotid sinuses (Kirchheim, 1976). 

The afferent information is carried to the brain via myelinated and unmyelinated fibres in 

the sinus nerve (a branch of the glossopharyngeal nerve) from the carotid sinus and via 

the vagus nerve from the aortic arch (Kircheim, 1976). The first synapse of the 

baroreflex can be found in the nucleus tractus solitarius (NTS) in the medulla of the 

brainstem (Spyer, 1984). The efferent limb of the baroreflex is carried in the sympathetic 
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nerves to the heart and vasculature, and the vagus nerve to the heart (Kircheim, 1976). 

The cell bodies of the parasympathetic neurones are found in the nucleus ambiguus 

(NA), which receives an input from the NTS, and the dorsal vagal motor nucleus in the 

medulla of the brainstem (McAllen & Spyer, 1976; Jordan et al. 1982) This is the origin 

o f the vagus nerve and it is cells in this area o f the brain that would need to be influenced 

to change baroreceptor efferent activity. The efferent limbs o f many vagally-mediated 

reflexes originate in the NA, as well as the dorsal vagal motor nucleus. The origin of the 

sympathetic efferent limb of the baroreflex can be found in the intermediolateral cell 

column of the spinal cord. The sympathetic motor neurones receive a tonic descending 

excitatory drive from a group of neurons in the rostral ventrolateral medulla (RVLM). 

Indeed, studies involving c-fos, a gene coding for the protein Fos expressed in cells such 

as neurons in response to externa! physiological stimuli (see McAllen et al. 1992), have 

shown increased c-fos immunoreactivity in spinally projecting neurons originating in an 

area within the rostral ventrolateral medulla (an area o f the brain stem known to be a 

major source o f sympathetic neurons supplying the heart and vasculature; see McAllen et 

al. 1992) following a 25% blood volume haemorrhage in conscious cats (McAllen et ai 

1992). The R V L M receives an inhibitory input from a group o f neurones in the caudal 

ventrolateral medulla (CVLM) , which receives input from the NTS. 

The sympatho-activation is not uniform to all vascular beds; those with the greatest 

dependence on oxygen are generally subject to the least vasoconstriction, while areas less 

dependent on oxygen, or more tolerant to transient reductions in oxygen delivery, have 

the greatest constriction. Thus the arterial baroreceptor reflex aims to maintain arterial 

blood pressure and thus preserve blood flow to areas which need it most. 

3.1.1.2 Phase I I ; The 'depressor' reflex 

Phase I I is characterised by a fall in heart rate to below pre-haemorrhage levels and a 

profound fall in arterial blood pressure (Barcroft et al. 1944; Secher & Bie, 1985). This 

is thought to be a protective mechanism to prevent high levels o f cardiac work with 

insufficient coronary perfijsion (Oberg & Thoren, 1972). The reflex bradycardia is 

mediated by activation of the vagus nerve, as this can be blocked with atropine in 

humans (Lewis, 1932. Barcroft et al. 1944) and experimental animals (Little et al. 1989). 

Inhibition o f the sympathetic efferent nerves to the vasculature mediates the fall in total 
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peripheral resistance (TPR; Oberg & Thoren, 1972). Recently there has been increased 

interest in the central nervous pathways mediating this response. Some studies have 

shown increased Fos protein expression (which is taken as a marker of increased 

neuronal activity) following haemorrhage in both the ventrolateral periaqueductal grey 

(vlPAG) and the caudal midline medulla (Badoer et al. 1993; Henderson et al. 2000). 

Both of these areas are known to cause inhibition of sympathetic efferent activity and, in 

the case o f the vlPAG, increased vagal efferent activity (see Evans et al. 2001). The 

resuh o f activation o f the cardiac vagus nerve and inhibition o f sympathetic efferent 

nerves to the vasculature is a profound fall in blood pressure. Phase I I of the response to 

a simple haemorrhage is not due to a failure o f the baroreflex as sensitivity is still high 

(Little et al. 1984), but due to a second 'depressor' reflex. 

For many years it was thought that the depressor reflex was due to activation o f cardiac 

vagal afferent C-fibres. The mechanosensitive receptor endings of these fibres are found 

in the ventricular myocardium and are stimulated by the abnormal deformations of the 

ventricular walls as the heart beats forceftilly around an almost empty chamber during 

haemorrhage (oberg and Thoren, 1972). The role of the cardiac C-fibres in phase 11 of 

the response to haemorrhage was supported by a body of circumstantial evidence: 

• It is known that when these receptors are stimulated they lead to a reflex bradycardia 

due to vagal activation, and a reduction in vascular resistance due to sympatho-

inhibition, i.e., similar to the response to a severe haemorrhage (Daly, Kirkman & 

Wood, 1988). 

• The instillation of procaine into the pericardial sac, which would block the supposed 

afferent pathway of the cardiac C-fibre reflex, blocks the depressor response to severe 

haemorrhage (Burke & Dorward, 1988; Evans e/a/. 1989). 

• The depressor response to severe haemorrhage was absent in animals treated 

neonatally with capsaicin, the capsaicin causing them to become deficient in afferent 

C-fibres (Little el a/. 1989). However, this was not conclusive proof o f the 

involvement o f the cardiac C-fibres as capsaicin destroys all C-fibres (Fizgerald, 

1983). 

Evidence against the involvement o f cardiac C-fibres in the depressor response has been 

brought to light by more recent studies Firstly, procaine has been shown to have more 

widespread effects than simply just blocking cardiac afferent C-fibres (Evans et al. 1993; 
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Gentry & Lukas, 2001). Secondly, cardiac transplant subjects wi th no Rmctional 

innervation o f the ventricles were reported to display the depressor response to severe 

haemorrhage in animals (Shen et al. 1990), and in response to an increasing dose of 

glycerol trinitrate (GTN) in man (Scherrer et al. 1990). This could not have been due to 

activation of the cardiac C-fibres as this afferent pathway was absent. Thirdly, this 

depressor response does not share the same central nervous pathway as the cardiac C-

fibre reflex, as inethiothepin (a 5 - H T I A receptor antagonist) administered centrally, will 

block the reflex bradycardia associated with activation of cardiac C-fibres in the rat 

(Bogle et ai 1990), but it did not block the bradycardia and hypotension seen during a 

severe haemorrhage (Kirkman et al. 1994). Therefore i f the cardiac C-fibres are involved 

in phase I I o f the response to haemorrhage, they cannot be the only mediator in the 

initiation of this reflex, and the major contributor to the activation of the depressor phase 

of the response to haemorrhage may be species dependent (Evans et al. 2001). 

The reflex bradycardic response to both blast (Ii-win et al 1999; Ohnishi et al. 2001) and 

haemorrhage (Lewis, 1932; Barcroft et al. 1944, Little et al. 1989) are mediated by 

activation of the vagus nerve. As they are both vagal reflexes it is pertinent to determine 

whether they interact. The outcome cannot be predicted from the published literature as 

the only situation were an interaction between haemorrhage and injury has been assessed 

is in the context o f musculo-skeletal injury. Because the response to musculo-skeletal 

injury is fundamentally different to that induced by thoracic blast (the former yielding 

tachycardia and hypertension while the latter gives bradycardia and hypotension) it is 

impossible to predict the effects o f the response to thoracic blast on that to haemorrhage. 

Since a blast casualty may go on to haemorrhage it is important to determine whether the 

response to thoracic blast may modify that to a subsequent haemorrhage. 

In assessing the interaction between the response to blast and haemorrhage it would be 

important to look at the haemodynamic changes following blast and haemorrhage since 

these may be important for long term survival (see section 3.1.1.3 and 3 .1.2.1) 

3.1.1.3 Haemodynamic changes following a progressive haemorrhage 

During a simple haemorrhage blood flow is diverted towards organs with a low 

ischaemic tolerance (e.g., the intestines) at the expense of those with a high ischaemic 
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tolerance (e.g., skeletal muscle), thereby maximally utilising the available oxygen supply 

(Mackway-Jones el al. 1999). However, when a haemorrhage occurs together with a 

model o f musculo-skeletal tissue injury, a reversal o f this haemodynamic situation is 

seen, i e. blood is diverted towards the relatively quiescent skeletal muscle at the expense 

of the metabolically active vital organs such as the gut (Mackway-Jones et al. 1999). As 

a consequence of this, the gut may become ischaemic and the gut barrier may become 

compromised possibly resulting in bacterial translocation and septicaemia (Mackway-

Jones el al. 1999). However, it is not known whether these haemodynamic changes will 

also occur with another type of injury, namely primary blast injury 

The response to blast may also give a reflex alteration in vascular resistance in addition 

to the bradycardia as abolishing the reflex by vagotomy attenuates the hypotension, 

whereas blocking the bradycardia with atropine does not modify the change in blood 

pressure (Ohnishi et al. 2001). 

3 .1.2 The effects of morphine on the individual responses to primary thoracic blast 

in/iiry and that to haemorrhage 

Morphine has been shown to attenuate the reflex bradycardia associated with the 

response to haemorrhage (Ohnishi et al. 1997) and those induced by activation of the 

pulmonary/cardiac afferent C-fibres with phenylbiguanidine (Ohnishi et al. 1999a). By 

contrast, morphine had no effect on the bradycardia induced by primary thoracic blast, 

but augmented the apnoea and delayed the recovery of blood pressure (Ohnishi et al. 

1999b). Both the haemorrhage-induced bradycardia (Lewis, 1932; Barcroft et al. 1944; 

Little et al. 1989) and the blast-induced bradycardia (Ohnishi et al. 2001) are mediated 

by the vagus nerve, however, it appears that morphine is able to modify one vagally 

mediated bradycardia but not the other. Thus, it would be interesting to determine the 

effects of morphine on the haemorrhage-induced bradycardia when it is on a background 

of thoracic blast injury. This is especially relevant since battlefield casualties are very 

likely to receive morphine as an early treatment before attempts at resuscitation can be 

made. 
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3 1 2.1 Haemodynamic changes following morphine administered during blood loss 

There are many similarities between the effects o f morphine and those o f musculo

skeletal injuiy on the response to haemorrhage, i.e. both morphine and musculo-skeletal 

injury block the bradycardia and delay the onset of the hypotension seen in phase I I of 

the response to a simple haemorrhage (Ohnishi et al. 1997; Little et al. 1989). Although 

Ohnishi et al. (1997) did not determine the haemodynamic pattern of response, the 

hypotension seen during a severe haemorrhage is mediated by sympathoinhibition 

(McAllen et a/. 1992) and morphine can prevent sympathoinhibition by activation of \x 

opioid receptors (Evans & Ludbrook, 1990). Thus it is possible that morphine may have 

reversed the haemorrhage-induced hypotension by causing an increase in total peripheral 

resistance. Although it could not be speculated as to where those increases in resistance 

may be greatest, other studies have shown that administration of morphine after simple 

haemorrhage reduces survival, despite better maintenance o f blood pressure (Marshall et 

al. 1998). Thus, this may be as a result o f an increase in vascular resistance in the vital 

organs. Blood f low to these metabolically active organs would then fall resulting in 

ischaemic damage. As morphine delays the recovery of blood pressure after a blast injury 

(Ohnishi et al. 1999b) it is important that the haemodynamic changes after a blast injury 

and a subsequent haemorrhage are investigated. 

Thus the aims of this study are to determine the effect of thoracic blast injury on the 

cardiorespiratory response to haemorrhage and whether these responses, or their 

interaction, are modified by morphine. Mackway-Jones el al. (1999) have already 

determined that changes in blood flow to the skeletal muscle occur during a progressive 

haemorrhage. To allow comparison, a preliminary study was conducted to determine 

whether any haemodynamic changes occur in the same vascular bed following blast 

injury and subsequent haemorrhage. Examination of blood flow to skeletal muscle using 

an ultrasonic flow probe wil l allow us to determine the haemodynamic pattern o f 

response to blast and haemorrhage in the femoral vascular bed. This will give an insight 

to the timepoints at which significant changes in femoral blood flow occur. Future 

studies will then permit the elucidation of blood flow to other organs, such as the gut, at 

these specific time points (i.e., where significant changes occurred in skeletal muscle). 

Due to the nature o f the blast injury, this wil l be carried out using fluorescent 

microspheres (Schimmel et al. 2001). 
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3.2 Methods 

The study was conducted on male Wistar rats (Harlan Olac; body weight range 265-

337g) terminally anaesthetised and prepared for recording as described in Chapter 2. 

3 2.1 txperimental protocol 

Following the surgical preparation, isoflurane (Abbott Laboratories Ltd., UK) was 

discontinued and anaesthesia maintained with alphadolone/alphaxalone (Saffan, Pitman-

Moore, UK, 19-21mg.kg"'.h"' iv) using an inflision pump (Harvard 22™, Harvard 

Apparatus Ltd., UK) while the animals breathed air. The infusion rate o f anaesthetic was 

adjusted to maintain a level of anaesthesia whereby a noxious pinch to the foot caused a 

mild withdrawal and a pressor response o f approximately 10 mmHg. Rats were allowed 

to stabilise for 60 minutes positioned supine in the blast apparatus Those subjected to 

blast were positioned with the ventral thorax 3.5cm below the blast nozzle (which 

delivers the blast wave to the animal, see Chapter 2, section 2.2) and baseline 

measurements o f heart period, blood pressure and blood flow were made. The protocol 

shown in Figure 3.1 was then followed. A pressure of I SOOpsi was generated in the blast 

apparatus and animals in the blast groups received a single discharge from the apparatus 

to the ventral thorax Animals were then randomly allocated to one of three groups: 

Group I (n=8) sham blast, haemorrhage and 0.9% saline (ImL.kg"') given 

intravenously 5 minutes after sham blast (5 minutes before the start of haemorrhage) 

Group I I (n=8) blast, haemorrhage and 0.9% saline (ImL.kg"') given intravenously 

5 minutes after blast (5 minutes before the start o f haemorrhage) 

Group I I I (n=5) blast, haemorrhage and morphine ( ImL.kg ' ' O.Smg.mL"') given 

intravenously 5 minutes after blast (5 minutes before the start o f haemorrhage). 

The cardiovascular measurements were made continuously from immediately prior to 

blast/sham blast, until 5 minutes after blast/sham blast whilst duration of apnoea was 

determined visually and recorded using a stopwatch. 
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Protocol 

Blast(11, HI) Saline ( I I I ) 
Sham blast (I) Morphine (HI) 

L U Haemorrhage 40% BV at 2% BV min .-1 continued recording 

Time (min) o 

Blood Loss (%BV} 0 

10 

0 

30 

40 

60 

Group Drug Blast Injury 

III 

Saline (1ml.kg-i, i.v.) 

Saline (1ml.kg-i, 1.v.) 

Morphine (1ml.kg -i O.Smg.ml saline, i.v.) 

n=8 

n=8 

n=5 

Figure 3.1 Diagrammatic representation of the protocol followed in this study (see 
section 3.1 for f l i l l explanation). Plus sign (+) indicates presence of 
haemorrhage and blast injury in that group. 

Five minutes after blast (or sham blast) animals received either 0.9% saline (Groups 1 and 

II) or morphine (Group I I I ) intravenously. Five minutes later cardiovascular 

measurements were repeated in all groups. Arterial blood was then withdrawn 

anaerobically into heparinised syringes from the ventral tail artery in all animals. The 

blood was withdrawn in 12 equal aliquots each over a 100 second cycle consisting of a 

70 second withdrawal period and a 30 second recording period, giving an overall 

haemorrhage rate of 2% blood volume/minute which resulted in a loss of 40% of the 

total blood volume (BV, 6.06 mg. lOOg"' body weight; Elebute & Liftle, 1978). 

Cardiovascular measurements were repeated after the withdrawal of each aliquot of 

blood, and each blood sample was subjected to blood gas analysis (ABL5™, 

Radiometer, Denmark). Cardiovascular measurements were continued at 5 minute 

intervals for the 20 minutes following the end of haemorrhage. A final arterial blood 

sample was then withdrawn anaerobically for blood gas analysis and the animals were 

then killed with an overdose of O.SmL of 60mg.iTiL"' (89-113mg.kg"') sodium 

pentobarbitone (Sagatal, RJione Merieux (Ireland) Tallaght, Dublin) administered 

intravenously. 
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3.3 Results 

There were no significant differences in the baseline (pre-blast or pre-sham blast) heart 

period or mean arterial blood pressure between any of the groups (See Table 3 .1). 

Group I Group 11 Group I I I 

Body wt (g) 
HP (ms) 
MBP (mmHg) 
Hcrit (%) 
Temp (oC) 

306.9±2.9 
139.1±4.7 
111.0±4.3 
40.7±0.6 
37.9±0.1 

316.9±8.6 
149.1±5.1 
105.4±5.1 
38.7±0.8 
37.5±0.2 

5 
319.2±12.3 
155.2±8.4 
108.5±8.4 
40.0±0.5 
37.6±0.2 

Table 3.1 Baseline values for heart period (HP), mean blood 
pressure (MBP), haematocrit (Hcrit), body temperature 
(Temp) and body weight (Body wt) . n denotes number of 
animals in group. Data presented are means+S.E.M. 

3.3.1 Effects of thoracic blast 

Sham blast produced no significant changes in heart period or mean arterial blood 

pressure in Group I (Figure 3.2). Thoracic blast (Group I I ) produced a significant 

increase of 317±28 ms in heart period from a pre-blast control of 149±5 ms and a 

significant fall in mean arterial blood pressure of 71.8±7 5 mmHg from a pre-blast level 

of 105.4±5.1 mmHg (Figure 3.2). Thereafter there was a partial recovery of heart period 

and mean arterial blood pressure although the animals were bradycardic and hypotensive 

for the subsequent 10 min after blast; in Group I I heart period was significantly above 

and mean arterial blood pressure significantly below the corresponding levels seen in 

Group I for 10 min after blast. Blast in Group I I I produced effects on heart period and 

mean arterial blood pressure similar to those seen in Group I I ; there were no significant 

differences between these two groups for the first 10 min after blast (Figure 3.2). 
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Figure 3.2 Effects of a 
thoracic blast injury/sham blast 
in anaesthetised rats on heart 
period (HP) and mean arterial 
blood pressure (MBP). Group I ; 
saline, sham blast ( • ) , Group 
I I ; saline and blast (o) and 
Group I I I ; morphine and blast 
(A) Data recorded immediately 
before blast (C), and thereafter 
immediately (0) and at 5 and 10 
minutes after blast. Values are 
means±S.E.M. 

Sham blast (Group I) produced no change in femoral vascular resistance or blood flow 

(Figure 3.3 n=4) Immediately after thoracic blast (Groups I I and I I I ) there was a fall in 

vascular resistance, followed by a recovery Consequently blood flow was maintained in 

the two groups despite the blast-induced hypotension (Figure 3.3; /7=4 & 3 respectively, 

preliminary study conducted on a sub-set of animals in respective groups) No statistical 

analysis was performed on this data due to the small number o f animals where it was 

possible to record femoral blood flow during blast. 
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Figure 3.3 Effects of a 
thoracic blast injury in 
anaesthetised rats on 
femoral vascular resistance 
(FVR) and femoral arterial 
blood flow (Fem Q). Group 
I ; saline, sham blast ( • ) , 
Group I I , sahne and blast 
( • ) and Group I I I ; morphine 
and blast (A). Data recorded 
immediately before blast 
(C), and thereafter 
immediately (0) and at 5 and 
10 minutes after blast. 
Values are means±S.E.M. 
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Thoracic blast produced an apnoea of duration 19.0±2.0 s and 16.511.7 s respectively in 

Groups I I and I I I ; there was no significant difference (Student's independent / test) in the 

duration of apnoea between these two groups (Figure 3.4), while sham blast did not 

produce apnoea. 
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Figure 3,4 Apnoea 
duration following 
thoracic blast injury in 
anaesthetised rats in 
Group I I ; saline and blast, 
and group I I I ; morphine 
and blast. Values are 
means±S.E.M. 

Group II Group III 

3.3.2 Effects of progressive haemorrhage 

Haemorrhage (all Groups) produced a significant change in heart period (Figure 3.5). 

Heart period increased significanfly above pre-haemorrhage control (Groups I & I I ; 
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Figure 3.5). Different animals reached their peak tachycardia and bradycardia at different 

amounts o f blood loss, consequently the graph shown in Figure 3 .5 underestimates the 

peak tachycardia and peak bradycardia in each group. However, as the individual 

tachycardias in each animal are smaller than the individual bradycardias, the overall mean 

tachycardia is not so clear. The following section will therefore compare the peak 

changes in heart period corresponding to the tachycardia and bradycardia from each 

individual animal. 

In Group I a progressive haemorrhage produced a biphasic response (Figure 3 .5). There 

was an initial tachycardia: heart period initially decreased in all animals in this group with 

the maximum changes being seen after blood losses in the range 3.3-20.0% blood 

volume (BV) in different individuals, yielding a significant (Student's paired / test) 

reduction in heart period o f 10±3 ms from a pre-haemorrhage level of 138±5 ms after the 

loss of 12.5±2.2 % B V . Thereafter there was a bradycardia in all animals, the peak 

increase being seen in the range 26.6-40.0 % B V loss giving a significant (Student's 

paired / test) maximum increase in heart period of 51 ±6 ms above pre-haemorrhage 

control after the loss of 32.1±1.6 % B V . Mean arterial blood pressure was initially 

maintained at a pre-haemorrhage level o f 110.8+3.3 mniHg before falling progressively, 

the hypotension attaining statistical significance (compared to pre-haemorrhage control) 

after the loss o f 13.3 % B V (Figure 3 5). 

In Group I I pre-haemorrhage heart period was significantly higher and mean arterial 

blood pressure significantly lower than the corresponding values in Group 1 because of 

the effects of blast in the former. The pattern of response to haemorrhage was 

significantly different in Group 11 compared to Group I (Figure 3.5; A N O V A ) The first 

compensatory phase of the response to blood loss was absent in Group I I . Examination 

of peak changes from each individual shows that there was no significant tachycardia in 

Group I I while the bradycardia (significant peak increase in heart period of 30.6±8.1 ms; 

Student's paired / test) was seen after the loss of 25.5±0.8 % B V . Although there was no 

significant difference in the peak increase in heart period induced by severe haemorrhage 

between Groups I and I I , the peak bradycardia in Group I I was attained at a significantly 

lower (Student's independent / test) volume of blood loss when compared to Group I 

Furthermore, in Group I I mean arterial blood pressure was not maintained during the 

haemorrhage and started to fall after the first aliquot o f blood had been removed (Figure 
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3.5), the hypotension achieving statistical significance (compared to pre-haemorrhage 

control) after the loss of 10% BV. 
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Figure 3.5 Effects 
o f a progressive 
haemorrhage following 
thoracic blast injury (or 
sham blast) in 
anaesthetised rats on 
heart period (HP) and 
mean arterial blood 
pressure (MBP). Group 
I ; saline, sham blast 
( • ) , Group I I ; saline 
and blast ( • ) and 
Group I I I ; morphine 
and blast (A). Values 
are means±S.E.M. 
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There were no significant differences in pre-haemorrhage heart period or mean arterial 

blood pressure in the morphine-treated animals of Group I I I when compared to Group I I 

(Figure 3 5). However, the pattern of response to haemorrhage was significantly 

different in Group I I I . Examination o f the peak changes from each individual revealed 

that the animals o f Group I I I exhibited a significant tachycardia with a maximum 

decrease in heart period o f 24±6 ms (Student's paired / test) being seen after a loss o f 

25.9±2.6 % B V , while there was no significant bradycardia in this group. In addition 

mean arterial blood pressure was maintained until the loss of 20 % B V , thereafter falling 

with mean arterial blood pressure becoming significantly below pre-haemorrhage control 

after the loss of 33.0 % B V Consequently mean arterial blood pressure was significantly 

higher in Group I I I compared to Group I I between 13.3 and 35.8 % B V loss (Figure 3.5). 

Thus, progressive haemorrhage in the absence of blast produced a biphasic response o f 

tachycardia followed by bradycardia with mean arterial blood pressure being maintained 
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initially before falling. Following blast the initial compensatory phase of the response to 

blood loss was abolished: the tachycardia was absent while mean arterial blood pressure 

fell as soon as haemorrhage commenced. Although it is impossible to compare the 

absolute values between Groups 1 and I I due to the different pre-haemorrhage baselines 

the bradycardic, hypotensive response to haemorrhage is seen after significantly smaller 

blood losses in Group I I . Finally, pre-treatment with morphine before the haemorrhage 

abolished the bradycardia induced by haemorrhage and led to longer maintenance o f 

mean arterial blood pressure. 

Although the sample sizes are too small to apply statistical analysis to the haemodynamic 

data (/7=3-4), preliminary results appear to show no difference in femoral blood flow 

between all groups with flow falling throughout the haemorrhage (Figure 3.6). Although 

there appears to be no difference in the pre-haemorrhage vascular resistance the 

subsequent response to haemorrhage appears to differ between groups. In Group I FVR 

appears to be maintained constant throughout the haemorrhage whilst after blast Group 

I I appears to show a vasoconstriction after the loss of approximately 15%BV. However, 

after the loss of approximately 20% B V Group I I I animals treated with blast and 

morphine appear to show a vasodilation. 
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Figure 3.6 Effects 
of a progressive 
haemorrhage 
following thoracic 
blast injury (or sham 
blast) in anaesthetised 
rats on femoral arterial 
blood flow (Fem Q) 
and femoral arterial 
vascular resistance. 
Group I ; saline, sham 
blast ( • ) , Group I I ; 
saline and blast ( • ) 
and Group 111, 
morphine and blast 
(A). Values are 
meanslS.E.M. 
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3.3.3 Effects of haemorrhage on arterial blood gases 

Ten minutes after thoracic blast (Group I I ) arterial oxygen tension (Pa02) and arterial pH 

was significantly below those seen in the sham blast treated animals of Group 1 (Figure 

3.7). Administration o f morphine after blast (Group I I I ) lead to a fijrther significant 

decrease in Pa02 and arterial pH, and a significant increase in arterial carbon dioxide 

tension (PaC02; Figure 3.7). Progressive haemorrhage led to a significant increase in 

Pa02 and a fall in PaC02 and arterial pH in all groups (Figure 3.7). There was no 

significant difference in the pattern of response between the groups. However, there was 

a significant difference in the absolute levels of Pa02, PaC02 and arterial pH between 

groups with Group I displaying the highest Pa02 and arterial pH and the lowest PaC02 

while Group I I I displayed the lowest Pa02 and arterial pH and the highest PaC02 (Figure 

3.7). 
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Figure 3.7 Effects o f a 
progressive haemorrhage of 
40% total blood volume 
following thoracic blast 
injury (or sham blast) in 
anaesthetised rats on 
arterial oxygen tension 
(Pa02), arterial carbon 
dioxide tension (PaC02) 
and arterial pH. Group 1; 
sahne, sham blast ( • ) , 
Group I I ; saline and blast 
( • ) and Group I I I ; 
morphine and blast (A). 
Values are means±S.E.M. 
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There was a significant fall in arterial base excess during haemorrhage in Groups I and I I , 

with values in the animals given sham blast (Group I) being significantly higher during 
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the eariy stages o f haemorrhage than those seen in animals given haemorrhage after blast 

(Group I I , Figure 3 8). Values of arterial base excess in the morphme-treated Group I I I 

were significantly lower than Groups I and I I until 20% BV loss. However in Group I I I 

there was no significant fall in base excess associated with blood loss (Figure 3.8). 

0 

-2 

LU 

m 

< -8 

-10 

-12 10 20 30 

Volume Haemorrhage (%BV) 

40 

Figure 3.8 Effects of a progressive haemorrhage of 40% total blood volume 
following thoracic blast injury in anaesthetised rats on arterial base 
excess (ABE). Group I ; saline, sham blast ( • ) , Group I I , saline and blast 
( • ) and Group I I I ; morphine and blast (A). Values are means±S.E.M. 

3.3.4 Po.st haemorrhage phase 

There were no differences in heart period or mean blood pressure between groups after 

haemorrhage. Furthermore, there were no significant changes in either parameter for the 

subsequent 20 minutes until the end of the study (Figure 3 .9). Femoral arterial blood 

flow also appears to show no difference between groups or over time for the same 

period (Figure 3.10) although due to the small sample size no statistical analyses was 

performed on the haemodynamic results. 
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Figure 3.9 Heart period 
(HP) and mean arterial blood 
pressure (MBP) following 
thoracic blast (or sham blast) 
and a progressive 
haemorrhage of 40% total 
blood volume in anaesthetised 
rats. Group 1, saline, sham 
blast ( • ) , Group I I ; saline and 
blast ( • ) and Group I I I , 
morphine and blast. Data 
recorded at 5, 10, 15 and 20 
minutes after haemorrhage. 
Values are means±S.E.M. 
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Figure 3.10 Femoral 
arterial blood flow and 
femoral arterial vascular 
resistance (FVR) 
following thoracic blast 
(or sham blast) and a 
progressive haemorrhage 
of 40% total blood 
volume in anaesthefised 
rats. Group 1; saline, sham 
blast ( • ) , Group I I ; saline 
and blast ( • ) and Group 
I I I ; morphine and blast. 
Data recorded at 5, 10, 15 
and 20 minutes after 
haemorrhage. Values are 
means±S.E.M. 
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There was no significant difference in Pa02, PaC02, pH or ABE 20 minutes after the end 

of haemorrhage (Table 3 .2). 

Group PaOi 

(minHg) 

PaC02 

(mmHg) 

pH A B E (mM) 

I 99.311.4 32.6±0.6 7.26±0.05 -8.611.3 

n 95.0+2.4 33,5±1.0 7.2910.00 -10.0+0.6 

m 93.3±6.2 39.3+3.8 7.2510.02 -10.012.5 

Table 3.2 Arterial blood gas results 20 minutes after the end o f haemorrhage. 
Group I ; sham blast, saline & haemorrhage. Group I I ; blast, saline & 
haemorrhage. Group I I I ; blast, morphine & haemorrhage. Pa02; arterial 
oxygen tension, PaC02, arterial carbon dioxide tension, pH, arterial pH, 
ABE; arterial base excess. 

3.4 Discussion 

Results from this study demonstrate that blast injury augments the bradycardic, 

hypotensive response to haemorrhage, and that morphine administered following blast 

injury, can attenuate this effect. Administration of morphine after blast does not affect 

the blast-induced bradycardia, consistent with earlier studies (Ohnishi et al. 1999b), or 

hypotension (which could not be predicted since pre-treatment with morphine delayed 

the recoveiy of blood pressure after thoracic blast; Ohnishi et al. 1999b). So it appears 

that morphine delays the recovery of the hypotension due to blast but once this response 

had been initiated, morphine had no effect. 

The present study indicates that there is a facilitatory interaction between the reflexes 

responsible for the response to blast injury and severe haemorrhage. This is in marked 

contrast to the effects of musculo-skeletal injury on the response to blood loss where 

tissue injury attenuates the hypotension and bradycardia induced by severe haemorrhage 

(Li t f lee/a / . 1989). 

The results from this study suggest that prior exposure to thoracic blast augments the 

hypotensive, bradycardic second phase of the response to blood loss such that the 

tachycardic compensatory first phase is essentially absent and the peak bradycardia 
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occurs at significantly lower blood losses than those seen in the absence blast. There are 

a number o f possible reasons for this effect of blast Firstly, the response to blast may 

attenuate the baroreflex, which is responsible for the first phase of the response to 

haemorrhage, or secondly, the response to blast may augment the 'depressor' reflex 

responsible for the bradycardia and hypotension associated with the second phase of the 

response to haemorrhage. The first possibility would seem feasible since after a thoracic 

blast injury there is a bradycardia associated with hypotension, rather than a tachycardia, 

which would be expected were the sensitivity o f the baroreflex normal. However, the 

effects of morphine in our study are not consistent with this explanation. In the present 

study morphine modified the response to haemorrhage after blast so that the 

compensatory phase was seen, including initial maintenance of arterial blood pressure 

and tachycardia, while the bradycardia associated with severe haemorrhage was 

abolished. It is unlikely that morphine achieved this effect by increasing the sensitivity of 

the baroreflex since it is known that | i opioid receptor agonists, in the absence o f blast, 

themselves reduce baroreflex sensitivity (Gordon, 1990; Hamra et al. 1999; Eltraifi et 

a/. 1988, 1989). The alternative explanation, namely that the response to blast augmented 

the 'depressor' reflex(es) initiated by severe haemorrhage, is consistent with the effects 

of morphine seen in the present study since it has previously been shown that morphine 

attenuates the depressor reflex associated with severe haemorrhage (Ohnishi et al. 1997, 

Evans & Ludbrook, 1990, Evans et al. 1989). Therefore, the most likely explanation 

based upon the current data, is that the response to blast augmented the depressor reflex 

associated with severe haemorrhage, which then overcame the baroreflex leading to an 

early fall in blood pressure and bradycardia. When this depressor reflex was blocked by 

morphine the baroreflex-mediated compensatory phase 1 was again uncovered. Another 

alternative may be that the "depressor" phase of the response to haemorrhage shares the 

same (unknown) afferent pathway of the response to thoracic blast injury and thus is 

potentiated by the effects o f blast. Hooker reported in 1924 an active loss o f venous tone 

with subsequent venous engorgement and pooling of blood within the abdominal veins 

after blast injury in experimental animals. Within 2 hours this engorgement was replaced 

by a decrease in size of the veins and this was thought to be as a consequence of 

transudafion of blood plasma. It is possible therefore that venous return is reduced after 

blast due to increased venous capacitance and consequently a fall in effective circulating 

blood volume may cause the second phase of haemorrhage to be initiated sooner. I f this 

were the case in this study, the reduction in venous return would far more likely be due 
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to venous pooling than a reduction in plasma volume due to the timescale. 

The present study also raises an interesting question regarding the precise nature of the 

baroreflex modulation following blast. It is clear that the baroreflex is modulated after 

blast since blast induced hypotension is associated with bradycardia (or at least no 

change in heart rate) rather than the tachycardia which would be expected were the 

baroreflex fianctioning normally. This effect could be mediated by a change in set point as 

well as an alteration in sensitivity and so the effects of blast on the baroreflex need to be 

addressed specifically. There is clear clinical significance to this question since patients 

with reduced baroreflex sensitivity may display greater transient falls in blood pressure 

with any haemorrhage, a feature which is not addressed in the current study but may 

occur even in the presence of morphine. 

However, baroreflex sensitivity may not be reduced after a blast injury, indeed after a 

severe haemorrhage when both blood pressure and heart rate have fallen it has been 

shown that baroreflex sensitivity is actually increased (Little et al. 1984) The blast itself 

may be initiating a reflex, which overrides the baroreceptor reflex. Ten minutes later at 

the start of haemorrhage this effect may still be ongoing and so the compensatory reflex 

response to haemorrhage is masked, i.e. the first phase is absent. 

Further studies involving the phenylephrine pressor test (Jones et al. 1989) performed 

after thoracic blast exposure might aid in determining any alterations in baroreflex 

sensitivity. 

Assuming baroreflex sensitivity were reduced by a blast injury, then a musculo-skeletal 

injury superimposed on blast may well reduce baroreflex sensitivity fijrther, as it is 

known that baroreflex sensitivity is reduced by musculo-skeletal tissue injury (Redfern et 

al. 1984). Administration of morphine to a patient in this state may augment the effect 

further as morphine is also known to reduce baroreflex sensitivity after musculo-skeletal 

tissue injury (Wyatt et al. 1995). This may have serious clinical implications as anything a 

clinician may do to a patient with reduced baroreflex sensitivity that may result in any 

amount of blood loss, will result in greater falls in blood pressure in that patient. 

The change in arterial blood gases after blast and subsequent haemorrhage are consistent 
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with previous studies. Animals subjected to thoracic blast displayed a lower Pa02 and 

higher PaC02 when compared to those given sham blast, consistent with impaired 

pulmonary gas transport after blast (Guy et al. 1998). A further reduction in Pa02 and 

elevation in PaC02 in morphine treated animals is consistent with the respiratory 

depressant effects o f morphine (Houmes et al. 1992). Subsequent elevation o f Pa02 and 

falls in PaCOs during haemorrhage in each of the groups is consistent with a 

haemorrhage-induced increase in ventilation suggested to be due to arterial 

chemoreceptor reflex activation as a consequence o f reduced blood flow to the 

chemoreceptors (Acker & O'Regan, 1981; Potter & McCloskey, 1987). However, these 

changes in respiratory activity and arterial blood gases are unlikely to account for the 

effects o f morphine on the cardiovascular response to severe haemorrhage. Indeed, any 

respiratory depression would be predicted to enhance, rather than reverse, the 

bradycardia associated with severe haemorrhage (Daly & Kirkman, 1988; Daly et al. 

1988; Blake et al. 1994). The fall in arterial pH and base excess in Groups I and I I is 

consistent with the development of a metabolic acidosis, possibly due to a failure of 

oxygen delivery to metabolically-active tissues. However, they appear to be maintained 

in Group I I I . This may be due to a greater reduction in blood flow to the splanchnic bed 

severe enough that the metabolites simply aren't being washed out. 

It is impossible from these studies to determine the site o f action of morphine in 

attenuating the depressor response to severe haemorrhage. A number of central nervous 

loci are known to show increased activity during severe haemorrhage. These areas 

include the ventrolateral periaqueductal grey and the rostral ventrolateral medulla (see 

Evans et al. 2001). It is known that the endogenous opioid system participates in the 

depressor response to severe haemorrhage; in the rat this is predominantly via activation 

of 5i opioid receptors in the periaqueductal grey (Cavun et al. 2001) and 5| and |.i opioid 

receptors in the spinal cord (Ang et al 1999). The picture is complex because other 

studies have shown that activation of \x opioid receptors can also attenuate the depressor 

response to haemorrhage (Evans et al. 1989; Evans & Ludbrook, 1990, 1991; Ohnishi et 

al. 1997). However, it is unlikely that morphine is acting within the spinal cord to block 

the depressor response to severe haemorrhage since it is blockade, rather than activation, 

of i-i receptors at this site which attenuates the depressor response to blood loss (Ang et 

al. 1999). Potential sites of action for morphine include the nucleus tractus solitarius, an 

afferent nucleus for a number o f cardiovascular reflexes, the rostral ventrolateral medulla 
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and the nucleus ambiguus (Evans el al. 1989; Evans & Ludbrook, 1990, 1991). Since 

morphine attenuated both the bradycardia and hypotension during severe haemorrhage it 

is possible that it is acting early in the reflex pathway, before the sympathetic and vagal 

limbs diverge. 

3.4.1 Haemodynamic changes following thoracic blast injury and subsequent 
haemorrhage 

The preliminary results of the haemodynamic response to thoracic blast injury appear to 

be a decrease in vascular resistance in the femoral vascular bed. This may be the result of 

a decrease in sympathetic outflow to the vasculature. However, this finding is contrary to 

that reported in the literature. Irwin and colleagues and Dodd et al. reported in 1997 that 

during thoracic blast injury alone i.e., without the added insult of a haemorrhage, 

'systemic vascular resistance index remained unchanged' (Irwin et al. 1997; Dodd et al. 

1997). However, in the current study vascular resistance was calculated using blood flow 

measurements taken in the femoral bed, whereas Irwin and colleagues (1997) and Dodd 

et al. (1997) calculated vascular resistance using cardiac index. Perhaps then total 

peripheral resistance remains unchanged during the response to blast, thus there must be 

intense vasoconstriction in other vascular beds whilst there may be a vasodilatation in the 

femoral vascular bed. 

A recent study reported an increase in total peripheral resistance at the first recording 30 

minutes after a blast injury in the pig (Harban et al. 2001). I f total peripheral resistance is 

increased after blast but vascular resistance is low in the skeletal muscle then, again, it 

follows that there must be an overall bigger increase in resistance in other vascular beds. 

Were this to occur in the vital organs it would result in a marked reduction in blood flow 

to these metabolically active organs. This may have serious clinical implications as a low 

blood flow to the gut may lead to a breakdown of the mucosal barrier and thus bacterial 

translocation (Mackway-Jones et al. 1999), this may lead to a systemic inflammatory 

response and possibly multiple organ failure. 

At the start of haemorrhage there is no evidence showing a difference in femoral vascular 

resistance (FVR) between the blast, haemorrhage and saline group (Group I I ) and the 

blast, haemorrhage and morphine group (Group I I I ) However, as the haemorrhage 
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becomes severe FVR in Group I I I falls below that in Group I I (Figure 3.6), but there 

appears to be no difference in flow as pressure is initially higher in the morphine group. 

At the end of the 40% haemorrhage there is no difference in mean blood pressure and 

femoral arterial blood flow between any of the groups, but there appears to be a 

vasodilation in the femoral vascular bed in the morphine treated animals (Figure 3.6; 

however, this is preliminary data with a small sample size). Evans and colleagues showed 

in 1990 that no vasodilation occurred during phase 2 of the response to haemorrhage 

after administration of morphine. However, in Evans' experiments flow was measured in 

the ascending aorta and therefore TPR was calculated. So again, i f there is a vasodilation 

in the femoral vascular bed after a morphine-treated blast and subsequent haemorrhage, 

and no change in total peripheral resistance (TPR; Evans & Ludbrook, 1990) then it 

follows that there must be a concomitant vasoconstriction elsewhere, e.g., the splanchnic 

organs. 

In the 20 minutes following the end of haemorrhage there is no difference in femoral 

blood flow, mean blood pressure or heart period between any of the groups, and no 

difference in femoral vascular resistance between Groups 1 and I I . However, preliminary 

data does appear to show a persistence o f the vasodilation in Group I I I , the morphine 

treated group, for at least the first 15 minutes afler the end o f haemorrhage. 

Further studies measuring flow to the gut or kidney as well to the femoral vascular bed 

might aid in determining the fijU haemodynamic response to blast and haemorrhage. Due 

to the manner in which the blast is delivered it would not be feasible to measure blood 

flow in the splanchnic organs using the ultrasonic flow probe used in this study. The blast 

wave may dislodge and damage the probe, and this may cause damage to the blood 

vessel in which blood flow is being measured. However, flow measurements could be 

carried out using fluorescent microsphere beads (Schimmel et al. 2001). The beads 

would be injected at the appropriate time when a blood flow measurement is required 

and this would provide a histological 'snap shot' of blood flow in several different organs 

at the same moment in time. A disadvantage to this technique is that it does not provide 

a continuous measurement. However, the use of different coloured beads at diflFerent 

times throughout the course of the experiment would provide a set of serial 

measurements. 
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In conclusion, this study indicates that thoracic blast modifies the response to progressive 

haemorrhage such that the compensatory first phase of the response to haemorrhage is 

lost and the hypotensive, bradycardic second phase is augmented and occurs after smaller 

blood losses. This effect is prevented by morphine. In addition, thoracic blast also 

appears to cause a fall in femoral vascular resistance which increases during a subsequent 

progressive haemorrhage whilst morphine attenuates this increase, an effect which 

appears to persist for at least 15 minutes post haemorrhage. It is therefore possible that 

blast may modify the clinical signs of blood loss in a patient. Pre-haemorrhage treatment 

with morphine prevents this effect but care must be exercised before viewing this effect 

of morphine as being protective since morphine in the absence of blast increases 

mortality after haemorrhage despite allowing longer maintenance of blood pressure 

(Marshall, et al. 1998). 
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4a Pulmonary and Cardiovascular Effects of Resuscitation after 

Thoracic Blast and Haemorrhage: Comparison of Whole Blood, 

Isotonic Saline and Colloid with Hypertonic Saline/Dextran 

(Early Resuscitation) 

4a. 1 Introduction 

In a recent study (Chapter 3; Kirkman et al. 2000a, Sawdon et al. 2002) it was shown 

that primary thoracic blast injury modifies significantly the cardiovascular response to 

progressive haemorrhage. The tachycardic phase I o f the response to haemorrhage, 

where blood pressure is maintained by the baroreflex, is absent when the blood loss is 

associated with blast. While the reflex hypotensive bradycardic phase I I of the response 

to haemorrhage is significantly augmented following blast. Since casualties who have 

suffered blood loss are likely to be given fluid resuscitation it is now important to 

determine the response to resuscitation following haemorrhage in animals which have 

also been subjected to blast injury Therefore the present study aims to compare 

resuscitation of the blast injured hypovolaemic patient with various solutions (see 

below). Initially this will need to be carried out in a pure haemorrhage/resuscitation 

model, i.e., before the possibility of any secondary damage occurring to remote organs 

due to tissue hypoxia resulting from prolonged hypotension, and so the subject wil l be 

resuscitated early, after a 5 minute hypovolaeraic "shock" period. 

There are several reasons why the response to fluid resuscitation after blood loss may be 

different in blast-injured animals compared to those suffering haemorrhage in the absence 

of blast. Potential differences may include not only the cardiovascular response but also 

the presence and degree o f pulmonary oedema (Guy et al. 1998) and resulting change in 

arterial blood gases. 

Thoracic blast injury leads to the development o f pulmonary oedema (Zuckerman, 1940; 

Clemedson, 1956; Cooper et al. 1983, Brown el al 1993; Guy et al. 1998; see Chapter 

1, section 1.4.3). This may have unrelenting consequences for the outcome of the blast 

injured patient (see section 4a 4.1.1, Table 4a.3 & Figure 4a. 14). Oedema occurs as a 
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result of an alteration in the parameters that govern fluid exchange across a capillary 

wall, and so it is important to understand the discipline of fluid exchange in order to 

attempt to treat or prevent tissue oedema. 

4a. 1.1 Transcapillary fluid exchange 

The endothelium consists of a continuous monolayer of endothelial cells lining the entire 

lumen of all the blood vessels within the body. Overlying the endothelium is the vascular 

smooth muscle, which together with the endothelium regulates vascular tone (see 

Burnstock & Ralevic, 1994). The endothelium, together with its basement membrane, 

also functions as a barrier in the capillaries and is the site of exchange for solutes/solvent 

between the blood and interstitial fluid (see Holliday, 1999), as well as providing a 

smooth surface, which inhibits widespread blood clotting. 

The entire plasma volume circulates between the intravascular space, the interstitial 

space and the lymphatic system at least once a day (see Levick, 1991). This fluid 

turnover helps to regulate plasma volume (see Holliday, 1999). The rate of filtration of 

the plasma can be ahered by the balance o f four forces (Starling, 1896), which 

collectively are referred to as Starling forces. 

4a. 1.2 Starling forces 

In 1896 Ernest Starling first described the basic rules of fluid exchange between the 

interstitial and intravascular compartments across the capillary endothelium. The 

movement of fluid across a capillary wall is governed by the sum of four forces acting 

upon that vessel; the hydrostatic pressure inside the capillary due to capillary blood 

pressure; P̂ ;, the hydrostatic pressure of the interstitial fluid; P„ the oncotic (osmotic) 

pressure due to plasma proteins; T T c , and the oncotic pressure due to proteins in the 

interstitial space; TTi (Starling, 1896). Hence the Starling equation can be written as: 

(Filtration rate per unit area) JJA = [(?^- Pi)-(7rc-7ti)] 
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Where is the capillary filtration coefficient, a measure of the permeability of the vessel 

(Michel, 1997; Nolan, 1999; Holbeck & Grande, 2000; see Levick, 1991). Capillaries 

with a low value have 'tight' intercellular junctions between their endothelial cells. 

These continuous capillaries can be found in the lungs, connective tissue, muscle, fat and 

skin (see Levick, 1991). The brain has particularly tight junctions. In tissues where fluid 

transfer is a particular feature of that tissue such as the kidney and gut mucosa, 

capillaries are fenestrated, that is they have 50nm pores within the endothelium. These 

pores are highly permeable to water and hence these vessels have a high value (see 

Levick, 1991; see Kirkman & Sawdon, 2001). 

The capillary wall behaves as a semi-permeable membrane with respect to the larger 

protein molecules as it restricts their movement whilst allowing the passage of water 

(Nolan, 1999). Consequently, plasma proteins, chiefly albumin and to a lesser extent 

globulins, exert a sustained osmotic force called oncotic pressure. However, the capillary 

wall is rarely a perfect semi-permeable membrane and does allow a small leakage of these 

large protein molecules, which therefore escape into the extravascular space to exert an 

oncotic pressure within the interstitial fluid compartment. Exacfly how much protein 

escapes depends on another proportionality coefficient, the reflection coefficient; a 

(Nolan, 1999; see Kirkman & Sawdon, 2001; see Levick, 1991; Michel, 1997) This can 

be thought o f as a measure of how much a particular solute is reflected by the capillary 

wall or how freely a particular solute can pass through the pore in the endothelium, and 

hence how much osmotic pressure that solute can exert. For example, i f the solute radius 

is much bigger than the pore radius and none of the solute can pass through then a has a 

value of 1 (as in the cerebral vasculature; Nolan, 1999) and the solute is completely 

eflfective osmotically. On the other hand i f the pore radius is much bigger than the solute 

radius and all o f the solute can pass through freely then a has a value of 0 and the solute 

exerts no osmotic pressure (see Holbeck & Grande, 2000; Levick, 1991; Michel, 1997). 

Generally though most capillaries have a reflection coefficient between these two 

extremes (typical values for o are 0.8 - 0.95) and so the solute exerts some degree of 

osmotic force within the capillary (Michel, 1997; see Kirkman & Sawdon, 2001). 

This can now be entered into the Starling equation to correct for the effective osmotic 

pressure at the capillary wall 

J J A = [(Pe- PO- a(7r.-7ri)] 
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I f the sum of this equation is positive filtration of fluid out of the capillary occurs, i f it is 

negative absorption occurs (Michel, 1997; see Kirkman & Sawdon, 2001). 

4a. 1 2 I The magnitude of the forces 

Capillai-y hydrostatic pressure is around 40 mmHg at the arterial end, whereas plasma 

oncotic pressure is around 25 mmHg (see Levick, 1991, Michel, 1997) favouring 

filtration at the arterial end. Interstitial fluid pressure is subatmospheric at 0 to -2 mmHg 

in most tissues (see Levick, 1991) while interstitial oncotic pressure is generally larger 

than this at about 10 mmHg (see Levick, 1991). 

As fluid is lost from the capillary down its length, Pc diminishes and hence net filtration 

petres ofl:'towards the venous end (figure 4a. 1, panel a; see Levick, 1991) but net 

absorption in this steady state is not reached as was traditionally believed, due to the high 

oncotic pressure of the interstitial fluid. In the event that capillary pressure is lower than 

usual at the arterial end such as in hypovoleamia or after arteriolar vasoconstriction, then 

absorption can occur at the venous end (see Levick, 1991). As capillary pressure 

decreases along the length o f the vessel due to filtration, it reaches a point at which the 

opposing forces are greater and absorption occurs (see Figure 4a. 1 panel b). However, 

this effect is transient as interstitial fluid pressure is now diminishing due to dehydration 

and hence oncotic pressure of the interstitium rises thus opposing the absorption and 

reverting back to a net filtration of fluid from the capillary (Figure 4a. 1 panel c; see 

Levick, 1991) 

Fluid absorption is thus a self-limiting process (except in tissues specialised for fluid 

absorption), as absorption raises interstitial oncotic pressure resuhing in filtration (see 

Levick, 1991), 
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The effect of arteriolar constriction on fluid exchange. From 
top. axial gradients o f capillary hydrostatic pressure, P ,̂ plasma 
oncotic pressure, (TIC); interstitial oncotic pressure, n„ 
interstitial fluid pressure. Pi; and their sum, the net pressure (with 
correction o f oncotic pressures for o = 0.9). Sketch below shows 
direction of fluid exchange from arteriolar beginning of capillary 
(A) to its venular end (V). (a) Well perfiased capillary, (b) 
Immediately after arteriolar vasoconstriction; transient absorptive 
state due to reduced capillary pressure, (c) Eventual steady state 
i f vasoconstriction is maintained, downstream absorption 
abolished by rise in interstitial oncotic pressure and fall in 
interstitial hydraulic pressures. Source: Levick, 1991. 

Despite mechanisms to maintain a steady state o f fluid exchange across the capillary wall, 

(see Kirkman & Sawdon, 2001 and Levick, 1991 for review of Starling forces and 

buffering of filtration) there are certain pathological conditions (e.g., trauma) which can 

lead to circumstances o f increased capillary permeability as a consequence of an 

inflammatory response. As a result intravascular proteins may leak into the interstitium 

causing a reduction in the forces opposing filtration of fluid out o f the capillary and thus 

lead to tissue oedema, as the usual buffering mechanisms cannot cope. However, there 

are certain fluids available which reportedly attenuate the inflammatory response (Sun el 

al. 1999; Mazzoni, 1990; Akgur et al. 1999; Brown, 1990; Haljamae, 1985; Sheilds et 

al. 2000; Corso, 1999; Nolte, 1992) and so the type o f fluid chosen for resuscitation may 

have important implications for the outcome of the patient. 
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4a. 1.3 Effects of blast injury 

Primary blast injury leads to shearing effects at air:water interfaces, e.g., in the lungs (see 

Chapter 1, section 1.4.2). It may be possible that this direct mechanical damage could 

lead to a rapid increase in capillary permeability, and it is known that blast injury leads to 

the development o f pulmonary oedema, a reduction in Pa02 and, i f severe enough, an 

elevation in PaC02 (Guy et al. 1998). This hypoxaemia may resuh in tissue hypoxia, a 

known trigger for an inflammatory response (Combe et al. 1997; Michiels et al. 1996) 

with a longer duration o f onset than the initial insult of the blast injury (Ohnishi et al. 

2001; see also Table 4a.3). Within the lungs, a secondary inflammatory response could 

potentially augment an already established pulmonary oedema. 

Other forms of blunt chest trauma can also lead to pulmonary oedema. Fluid 

resuscitation following blunt chest trauma, especially with crystalloid solutions, has been 

shown to increase the degree of pulmonary oedema and hypoxaemia (Fulton et al. 1973; 

Richardson et al. 1974, Tranbaugh et al. 1982). A recent study (Cohn et al. 1997) 

compared the effects of resuscitation with normal saline vs small volumes of hypertonic 

(7.5%) saline following haemorrhage and pulmonary contusion since resuscitation with 

hypertonic solutions can potentially reduce tissue oedema (see section 4a.4.2). However, 

in the case o f localised pulmonary contusion no difference in the degree o f oedema could 

be seen between normal and hypertonic saline-treated animals (Cohn et al. 1997). 

As microvascular permeability may be increased, thus giving a low reflection coefficient, 

and an inflammatory response may be initiated after primary blast injury (see above), then 

this may imply that fluids may act differently to results obtained from fluid resuscitation 

studies in the absence of primary blast injury. Fluids reported to have good intravascular 

expansion properties may now leak out of the microvasculature. 

The type o f fluid chosen in the resuscitation of the trauma patient should reflect the 

needs o f the patient at that time, and thus compounding factors need to be taken into 

account, such as the amount of fluid lost, underlying pre-existing medical conditions, and 

the extent and type of injuries to the patient. The crystalloid-colloid debate continues 

after many decades due to the lack of reliable evidence supporting one over the other 

(Nolan, 1999). Large volumes o f crystalloids are required for adequate intravascular 
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volume expansion, however, this may be thought of as beneficial as some argue that the 

extravascular compartment also needs replenishing after hypovolemia (Haljamae et al. 

1997). In contrast to crystalloids, it is with colloid solutions that anaphylactic reactions 

occur; though colloids have greater intravascular persistence. And so the debate 

continues. Resuscitation with whole blood may be the "Gold Standard" but the use of 

this fluid is not always practical, especially in military situations. A fluid that has been of 

increasing interest for pre-hospital resuscitation of the trauma victim is hypertonic 

saline/dextran (HSD, Vassar et al. 1993). This fluid is reported to be a potent volume 

expander and claims to markedly improve survival in the hypovolaemic pafient. Indeed 

the more seriously injured the patient, the greater the reported benefit from HSD use 

(Wade a/. 1997a). 

Below is an overview from the literature o f each o f the fluids examined in this study. 

4a. 1.4 Whole blood 

Resuscitation with whole blood is preferable especially for haemorrhagic shock as it has 

significant oxygen carrying capacity (Nolan, 1999) and is reported to attenuate 

reperfijsion injury, possibly by returning the increase in neutrophil activity seen after 

haemorrhage, back to baseline (Rhee et al 1998) and attenuating apoptosis in the lungs 

(Subrato et al 2000). In addition, no significant increase in the expression o f the 

adhesion molecules that affect neutrophil-mediated reperfijsion injury, E & P selectins, 

was reported after whole blood resuscitation (Alam et al. 2000). However, whole blood 

is expensive and in short supply, and is often not easily available especially in a military 

setting, as it requires special storage facilities and cross-matching (Nolan, 1999). 

4a. 1.5 Crystalloid solutions 

Physiological isotonic saline (0.9%) is a commonly used inexpensive crystalloid solution. 

It contains no oncotic molecules and wil l therefore cross the vascular endothelium 

rapidly. Because of this property, large volumes are required for resuscitation of 

hypovolemia and approximately 1 . 5 - 2 litres of crystalloid is needed for the 
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replacement o f a 450mL blood loss (Nolan, 1999). Although this solution is well 

distributed across the extracellular compartment (interstitial space and intravascular 

space) and thus compensates for the disturbance in haemostasis due to the internal fluid 

shifts experienced after trauma (see Holliday, 1999; Haljamae, 1985), the extra fluid 

accumulation in the interstitium contributes to tissue oedema, compromising capillary 

blood flow and hence oxygen delivery to the tissues (Schott et al. 1988). A recent study 

by Alam and colleagues in 2000 showed resuscitation with Lactated Ringers solution 

(LR), another commonly used isotonic crystalloid solution, resulted in the early up-

regulation o f adhesion molecules E & P selectins in the lung and spleen, leading to the 

development of pulmonary oedema (see section 4a.4.2). Other studies showed an 

increase in neutrophil activation after resuscitation with LR solution only, when 

compared to whole blood and hypertonic saline (Rhee et al. 1998) and an immediate up-

regulation o f Intercellular Adhesion Molecule-1 ( I C A M - I ) and Vascular Cell Adhesion 

Molecule-1 ( V C A M - 1 ; Sun et al. 1999). This suggests that expression of pro

inflammatory mediators may be inhibited by some solutions (e.g., shed blood; Sun et al. 

1999), whereas other solutions (e.g., crystalloids; Sun et al. 1999) confer no protection 

against their up-regulation. 

4a 1.6 Colloids 

The use o f colloids in trauma resuscitation is advantageous given that they have a 

prolonged plasma volume support and are reported to improve microcirculatory blood 

flow (Kreimeier et al. 1995). These fluids maintain plasma oncotic pressure, and so the 

risk o f tissue oedema is reduced because these relatively large molecules do not cross the 

endothelium easily. However, there is still a certain amount of debate as to which colloid 

to use in the resuscitation o f the trauma victim. Gelatin solutions tend to be favoured 

clinically in the UK as an initial plasma volume expander (Nolan, 1999). This colloid has 

an average molecular weight o f about 30 000 Daltons but contains a high proportion of 

lower molecular weight components (Nolan, 1999). Thus the plasma volume support of 

gelatins is limited as the low molecular weight components rapidly leak from the vascular 

compartment (Allison et al. 1999) and so within 1-2 hours o f resuscitation the effect on 

plasma expansion is similar to that of crystalloid solutions (Lamke et al. 1976). This 

effect is reflected in a study comparing the effects of various fluids on capillary fluid 
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permeability in an isolated, autoperfijsed and denervated cat skeletal muscle. Gelatin was 

shown to increase the capillary fikration coefficient and thus induced trans-capillary 

filtration and tissue oedema during and after infiasion (see Holbeck & Grande, 2000). 

However, this preparation is far f rom a more normal in vivo situation and so the results 

should be viewed with a certain degree o f caution. The use o f gelatins has been 

associated with a high incidence o f anaphylactic reactions (Ring & Messmer, 1977). 

However, since this study the rate o f occurrence of anaphylaxis has fallen due to a 

modification in the preparation of this colloid. Despite this, the use of gelatin solutions in 

the U K still remains high compared to the rest o f the world (Nolan, 1999). 

Another colloid used commonly in trauma resuscitation is hydroxyethyl starch solutions 

(HES). HES has been shown to reduce capillary leak (Allison et al. 1999) and reduce 

reperfusion injuries (Wisselink et al. 1998). This may be as a result o f an inhibition of 

oxygen free radical formation (Nielsen et al. 1997) and a down regulation o f pro

inflammatory mediators such as interleukin 6 (rL-6; Schmand et al. 1995). An increase in 

gas exchange 48 hours after resuscitation with HES in a human trauma study by Allison 

and colleagues in 1999 may be a reflection o f a reduction in pulmonary oedema when 

compared to resuscitation with a gelatin solution. 

HES is the least expensive colloid used for plasma volume expansion (Schmand et al. 

1995) and is a bigger molecule than gelatin with an average molecular weight of 250 

kDaltons (mean molecular weight o f HES used in this study is 200kDa) and so does not 

pass through the plasma membrane easily, potentially giving better plasma volume 

support (Allison et al. 1999). HES is made of cross-linked glucose units, some of which 

are substituted with a hydroxyethyl subgroup. This allows for a longer half-life (and 

therefore better plasma volume support) in the body (Nolan, 1999). However, the more 

hydroxyethyl subunits that are substituted in the molecule, the less likely it is that the 

molecule wil l be broken down and this could lead to anaphylactic reactions in some 

patients (Nolan, 1999; degree o f substitution o f HES used in this study is 0 .5). 
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4a. 1.7 Hypertonic saline/dextran 

Resuscitation with hypertonic solutions is advantageous particularly in a prehospital 

setting, as only small volumes are required Indeed the infijsion o f 250mL of hypertonic 

(7.5%)) saline in conjunction with the colloid dextran results in a similar plasma volume 

expansion to that achieved in resuscitation with 3 litres of a crystalloid solution (Hillman 

et al. 1997). Hypertonic saline/dextran (HSD) is reported to improve microcirculatory 

blood flow (Kreimeier et al. 1997) by reducing endothelial cell swelling (Mazzoni, 1990; 

Corso et al. 1998), and causing a vasodilation (Mazzoni et al. 1988), thus increasing the 

luminal diameter o f the capillary. Other advantages from the use of HSD in trauma 

resuscitation include a reduction in reperflision injuries by inhibiting leukocyte adhesion 

to the endothelium (Corso et al. 1999; Nolte, 1992). This would reduce free radical-

induced injury to endothelial cells in both the systemic and pulmonary vasculature, which 

would otherwise result in endothelial cell contraction and colloid leak due to an increase 

in capillary permeability. Thus HSD has the potential to attenuate tissue oedema, which 

in the lungs could reduce the risk of developing Adult Respiratory Distress Syndrome 

(ARDS). Despite these beneficial reports of HSD the increase in blood pressure attained 

with HSD resuscitation after haemorrhagic shock, was transient, lasting only 10 minutes 

in one study with unanaesthetised rats (Chang & Varma, 1992) and, along with 

restoration o f cardiac output in bled dogs, was poorly maintained in another study 

(Curtis & Cain, 1992). 

It is now important to determine whether, and to what degree, resuscitation exacerbates 

pulmonary oedema after a combination of haemorrhage and the more generalised 

pulmonary injury induced by thoracic blast, and whether resuscitation with hypertonic 

saline/dextran may be beneficial in this model. In our study it wil l also be important to 

determine the cardiovascular and haemodynamic effects of resuscitation since there is 

evidence that resuscitation with normal saline after blast alone impairs cardiovascular 

performance (Wikof f et al. 1999). Additionally, some studies have suggested that 

resuscitation with hypertonic solutions may have a positive inotropic effect (Mouren et 

al. 1995) leading to a potentially beneficial effect of hypertonic resuscitation in blast 

casualties, which needs to be investigated. The study will assess the effects of 

resuscitation with various fluids in comparison to that with whole blood as whole blood 

is reported to reduce reperiusion injuries (Rhee et al. 1998; Subrato et al. 2000) whereas 
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resuscitation with crystalloids is reported to augment reperfiasion injuries (Rhee et al. 

1998; ^unetal. 1999). 

The aim of the present study was to compare the cardiovascular effects o f early 

resuscitation with different solutions, autologous blood, isotonic colloids (Haemaccel 

and hydroxyethyl starch), isotonic crystalloid (0.9% saline), and hypertonic 

saline/dextran following thoracic blast and a haemorrhage of 40% blood volume. In 

addition, the pulmonary effect was assessed by measuring post mortem lung weight 

ratios and arterial blood gases during the experiment. 

4a.2 Methods 

The study was conducted on male Wistar rats (Harlan Olac; body weight 231-283g) 

which were terminally anaesthetised and prepared for recording as described in Chapter 

2. 

4a. 2.1 Experimental protocol 

Following the surgical preparation the rats were positioned directly under the blast 

nozzle (which delivers the blast wave to the animal, see Figure 2.1), with the blast nozzle 

3 .5 cm above the ventral surface of the thorax. The isoflurane (Abbott Laboratories Ltd., 

UK) was discontinued and anaesthesia maintained with alphadolone/alphaxalone (Saflfan 

™, Pitman-Moore, UK) using an infiasion pump (Harvard 22"^, Harvard Apparatus Ltd. , 

UK) while the animals breathed air. The anaesthesia was adjusted within the range 19-22 

mg.kgVh"' to maintain an experimental level of anaesthesia (mild withdrawal and a 

pressor response o f approximately lOmmHg to a noxious pinch o f the foot). 

Following baseline cardiovascular, respiratory and blood gas measurements the protocol 

shown diagrammatically in Figure 4a.3 was then followed. Al l animals received a single 

discharge from the apparatus to the ventral thorax. 
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Protocol 

Thoracic blast Resuscitation 

„ v , r ,w . -ll 1 Icontinued recording for 30 
Haemorrhage 40% BV at 2% B V mm J | L i n post resuscitation 

T i m e ( m i n ) 0 10 30 35 57 87 

Blood loss (%) 0 0 

Group Haemorrhage Blast Resuscitat ion fluid 

I + + Blood n=6 

II + + 7.5% Saline/Dextran n=5 

in + + Modif ied Gelatin (Haemaccel) n=6 

rv + + 0.9% Saline n=6 

V + + Hydroxyethyl Starch n=6 

Figure 4a.3 Diagrammatic representation of the protocol followed in this study (see 
section 4a.2.1 for fiall explanation). Plus sign (+) indicates presence of 
haemorrhage and blast injury in that group. 

Five minutes later a control (pre-haemorrhage) recording was made in all groups. Ten 

minutes after administering the blast wave all animals were subjected to a controlled 

haemorrhage by anaerobic withdrawal of blood from the ventral tail artery in 12 equal 

aliquots at an overall rate of 2% estimated total blood volume per minute (6.06mL.100g' 

' body weight, Elebute et al. 1978) until 40% of the total estimated blood volume had 

been withdrawn. 

The animals were then allocated randomly to groups I -V and resuscitated 5 minutes after 

the end of haemorrhage with one of the following given intravenously via the tail vein at 

the standard clinical rate of l . lmL.kg ' .hr" ' with the exception of 0.9% saline which was 

administered at the standard clinical rate for crystalloid solutions: 3.3mL.kg''.hr"' (ATLS 

guidelines); 

• anti-coagulated (heparinised with Monoparin, CP Pharmaceuticals, UK) autologous 

blood (1:1 resuscitation volume:blood loss) 

• hypertonic saline/dextran solution (RescueFlow*; 7.5% saline/6%) dextran 70, 

4mL.kg-') 

• isotonic colloid solution (modified gelatin, Haemaccel, Hoescht Marion 
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Roussel, Germany, 1;1 resuscitation volume:blood loss) 

• isotonic crystalloid solution (0.9% saline, Fresenius Kabi Ltd. UK, 3:1 resuscitation 

volume:blood loss) 

• isotonic hydroxyethyl starch (HAES-steril, Fresenius Ltd., UK, 1:1 resuscitation 

volume:blood loss) 

See Table 4a. 1 for a summary of treatments. 

Cardiovascular measurements were made from 1 min before blast continuously until 5 

min after blast, immediately before haemorrhage, after the removal of each aliquot of 

blood during haemorrhage, immediately before resuscitation, at 5 min intervals during 

resuscitation and thereafter immediately, 5, 10, 15, 20, 25 and 30 minutes after 

resuscitation. The duration of the blast-induced apnoea was determined visually and 

timed using a stopwatch. Blood gas analysis (ABL5™, Radiometer, Denmark) and 

haematocrit values (Hawksley micro-haematocrit reader) were obtained for samples 

taken immediately before blast, the first and last samples taken during haemorrhage, 

immediately after resuscitation and at 15 and 30 minutes after resuscitation. 

All animals were killed 30 minutes after the end of resuscitation with an overdose of 

0.5rnL of 60mg.mL"' (106-124 mg.kg"') sodium pentobarbitone (Sagatal, Rhone Merieux 

(Ireland) Tallaght, Dublin) administered intravenously. 

The lungs were removed and weighed to determine Lung Weight Index (lung 

weight^ody weight). 
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Table 4a. 1 Summary of treatments: All groups received thoracic blast followed 10 

min later by a controlled haemorrhage of 40% estimated blood volume at 

2% BV.min ' then resuscitated with one of the following fluids; 

Resuscitation Fluid Group 
(resuscitated 5 min after 

haemorrhage) 
Anti-coagulated I 
autologous blood (1:1 
resuscitation volume:blood 
loss) 
Hypertonic saline/dextran I I 
(7.5% saline/6%) dextran 
70, 4mL.kg') 
Isotonic colloid solution I I I 
(modified gelatin, 
Haemaccel, 1:1 
resuscitation volume:blood 
loss) 
Isotonic crystalloid IV 
solution (0.9%) saline, 3:1 
resuscitation volume:blood 
loss) 
Isotonic hydroxyethyl V 
starch (1:1 resuscitation 
volume:blood loss) 

4a.3 Results 

4a. 3.1 Baseline values 

Baseline (pre-blast) values for each group are presented in Table 4a.2. There were no 

significant differences between groups in the baseline cardiovascular or arterial blood gas 

variables, body weight or body temperature except for heart period between groups I 

and IV, femoral blood flow between groups II and I I I , and body temperature between 

groups I I I and V (see statistical analysis section. Chapter 2, section 2.3). However, these 

differences are so small they are generally of no physiological consequence. Body 

temperature did not change significantly during the course of the study in any group. 
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Group 1 Group II Group III Group IV Group V 
n 6 5 6 6 6 
Body wt (g) 257.5±8.3 254.018.5 251.812.8 248.212 6 252.512.3 
HP (ms) 165±3 15313 148+6 14612 148+6 
MBP (mmHg) 102.1±2.3 104.012.2 106.514.4 100.912.9 96.9+6.1 
Fern Q (mL.min ') 0.63±0.08 0.4810.16 1 0510.16 0.7510.10 0.6610.10 
PVR 178±5 197138 10018 170+46 161127 
{mmHg.min.mL'^) 
Pa02(mmHg) 89.3±1,6 83.4+2.8 84.712.4 88.211.0 87.8+5.1 
PaC02(mmHg) 33.8±1.3 32.2+1.2 37.311.1 36.0+1 8 32,710.9 
a pH 7.35±0.02 7.3710.01 7 3610.01 7.3810.01 7.37+0.01 
ABE (mM) -6.011.2 -5,410.7 -4.010.9 -3.211.1 -5,210.5 
Hcrit (%) 34.2±1.3 33.411.2 32.5+2.3 32 7+1.2 33,0+0,7 
Temp (oC) 37.510.2 37.710.2 37.910.1 37.710.0 37,2+0,1 

Table 4a.2 Baseline (pre-blast) values in five groups of anaesthetised rats. Number of 
rats (rr); body weight (body wt); Heart period (HP); mean arterial blood 
pressure (MBP); femoral arterial blood flow (Fern Q); femoral arterial 
vascular resistance (FVR); arterial oxygen tension (Pa02), arterial carbon 
dioxide tension (PaCOa) arterial pH (a pH) actual base excess (ABE), 
haematocrit (Hcrit) and body temperature (Tc). Values are mean ± SEM. 

4a. 3.2 Effects of thoracic blast 

Thoracic blast in Group 1, produced a significant increase of 307±60 ms in heart period 

from a pre-blast control of 165±3 ms (Figure 4a.4), and a significant fall in mean blood 

pressure of 64.8±5.1 mmHg from a pre-blast level of 102.1±2.3 mmHg (Figure 4a.4). 

Thereaft;er there was a rapid recovery in heart period and a partial recovery in mean 

arterial blood pressure (MBP). Ten minutes after blast MBP was still significantly below 

pre-blast levels. 
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Figure 4a.4 Effects of a thoracic blast injury in anaesthetised rats on heart period (HP) 
and mean arterial blood pressure (MBP) in Group I ; ( • ) , Group I I ; (•) , 
Group I I I ; (o), Group IV; (A) and Group V; ( A ) . Data recorded 
immediately before (C) and thereafter immediately (0) and at 5 and 10 
minutes after blast. Values are meanstS.E.M. 

In addition, thoracic blast (Group 1) produced a significant (Student's independent / test) 

apnoea lasting 19.67±0.67 seconds (Figure 4a.5). 
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Figure 4a.5 Duration of apnoea in five groups of anaesthetised rats following thoracic 
blast injury. Values are means±S.E.M. 

Furthermore, blast produced a significant, transient fall in femoral arterial blood flow of 

0.51±0.08 mL.min"' from a pre-blast control of 0.63±0.08 mLmin ' (Figure 4a.6), and a 

significant, transient fall in femoral arterial vascular resistance of 97.3±5.0 

mmHg.min.mL'' from a pre-blast level of 177.9±5 0 mmHg.min.mL"' (Figure 4a.6), 
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Figure 4a.6 Effects of a thoracic blast injury in five groups of anaesthetised rats on 
femoral arterial blood flow (Fem Q) and femoral arterial vascular 
resistance (FVR). Group I ; ( • ) , Group I I ; ( •) , Group I I I ; (o), Group IV; 
(A) and Group V; ( A ) . Data recorded immediately before (C) and 
thereafter immediately (0) and at 5 and 10 minutes after blast. Values are 
means±S.E.M. 

Following blast there was a significant fall in Pa02 of 21.00±2.96 mmHg from a control 

pre-blast value of 89.33±1.65 mmHg, and arterial pH of 0.04±0.02 from a pre-blast 

control of 7.35±0.02 (Figures 4a.7). PaC02 and haematocrit both increased significantly 

following blast from a pre-blast level of 38.83±1.30 mmHg and 34.17±].30 % to 

41.00±1.44 mmHg and 38.80±0.78 % respectively (Figures 4a.7 & 4a.8). 
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Figure 4a.7 Effects blast, haemorrhage and subsequent resuscitation in anaesthetised 
rats on arterial oxygen tension (Pa02), arterial carbon dioxide tension 
(PaC02), arterial pH (art pH) and arterial base excess (ABE). Group I ; 
blood ( • ) , Group I I ; hypertonic saline/dextran (•) , Group I I I ; haemaccel 
(o) Group IV; 0.9% saline (A) and Group V; hydroxyethyl starch ( A ) . 
Data recorded immediately before blast (Pre-B), at the start of a 
haemorrhage of 40% total blood volume (Start H), at the end of 
haemorrhage (End H), at the end of fluid resuscitation (End R) and 
thereafter at 15 (R+15) and 30 (R+30) minutes after resuscitation. Values 
are means+S.E.M. 

There was no significant change in ABE during this period. Thoracic blast in Groups I I -

V produced effects on the above parameters similar to those seen in Group I ; there were 

no significant differences between groups for the first 10 minutes after blast except for 

femoral blood flow. This difî erence reflects the differences in the baseline values for 

femoral blood flow as there was no significant difference in the pattern of response of 

femoral blood flow in the first 10 minutes after blast. 
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Figure 4a.8 Effects blast, haemorrhage and subsequent resuscitation in anaesthetised 
rats on haematocrit (Hct). Group I; blood ( • ) , Group II; hypertonic 
sahne/dextran (•) , Group III; haemaccel (o) Group IV; 0.9% saline (A) 
and Group V; hydroxyethyl starch ( A ) . Data recorded immediately before 
blast (Pre-B), at the start of a haemorrhage of 40% total blood volume 
(Start H), at the end of haemorrhage (End H), at the end of fluid 
resuscitation (End R) and thereafter at 15 (R+15) and 30 (R+30) minutes 
after resuscitation. Values are means+S.E.M. 

4a. 3.3 Effects of progressive haemorrhage 

Haemorrhage of 40%o blood volume, initiated 10 minutes after thoracic blast, induced a 

significant change in heart period (Figure 4a. 9) and mean blood pressure in all groups 

(Figure 4a.9). There was no evidence of the first, tachycardic, phase of the response to 

blood loss normally associated with haemorrhage in the absence of thoracic blast injury. 

The absolute mean blood pressure was significantly higher in Group III compared to 

Group V (ANOVA), however there were no significant differences in the pattern of 

response between groups. The following section will compare the peak change in heart 

period corresponding to the bradycardia from each individual animal. 

Animals in Group I showed no significant tachycardia, while the bradycardia (significant 

peak increase in heart period of 26.52+7.06 ms; Student's paired / test) was seen after 

the loss of 20.56+4.08 % blood volume (Figure 4a.9). Furthermore, mean arterial blood 

pressure was not maintained in Group I during the haemorrhage and began to fall after 

the removal of the first aliquot of blood, the hypotension achieving statistical significance 

compared to pre-haemorrhage control after the loss of 6.7+0.0 % blood volume (Figure 
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4a.9). There was no significant difference in the peak increase in heart period, or in the 

hypotension induced by progressive haemorrhage between groups. 
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Figure 4a.9 Effects of a progressive haemorrhage following thoracic blast injury in 
five groups of anaesthetised rats on heart period (HP) and mean arterial 
blood pressure (MBP). Group I ; ( • ) , Group I I ; (•) , Group I I I ; (o), Group 
IV; (A) and Group V; ( A ) . Values are means+S.E.M. 

Associated with the fall in arterial blood pressure there were significant reductions in 

femoral arterial flow in all groups. The fall in femoral blood flow became significant in 

Group I after the loss of 6.7±0.0 % blood volume (Figure 4a. 10). However, there was no 

evidence of a change in femoral vascular resistance during the blood loss (Figure 4a. 10). 
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Figure 4a.l0 Effects of a progressive haemorrhage following thoracic blast injury in 
five groups of anaesthetised rats on femoral arterial blood flow (Fem Q) 
and femoral arterial vascular resistance (FVR). Group I ; («), Group 11; 
(•) , Group I I I ; (o), Group IV; (A) and Group V; ( A ) . Values are 
meanslS.E.M. 

By the end of the haemorrhage Pa02 (Group 1) had increased significantly by 19.2+2.94 

mmHg from a pre-haemorrhage value of 68.3+2.96 mmHg (Figure 4a.7) while there was 

no significant change in PaC02 (Figure 4a.7). There was a fall in arterial pH and base 

excess of 0.07+0.04 and 4.33+0.97 mM from a pre-haemorrhage level of 7.3 1+0.02 and 

-5.67+0.92 mM respectively (Figure 4a.7). Haematocrit also fell by 5.8+0.9 % from a 

pre-haemorrhage control of 38.8+0.8 % (Figure 4a.8) in Group 1. There was no 

significant difference in blood gas parameters between groups during the haemorrhage 

period. 

4a. 3.4 Effects of resuscitation 

Five minutes after the end of haemorrhage animals in groups I-V were resuscitated with 

autologous blood (Group I), hypertonic saline/dextran (Group II), colloids; modified 

gelatin (Haemaccel, Group III) and isotonic hydroxyethyl starch (HES, Group V) or 

0.9% saline (Group IV). Resuscitation with whole blood (Group I) induced a significant 

elevation in arterial blood pressure of 68.5+3 49 mmHg from a pre-resuscitation level of 
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37.4±3.48 mmHg (Figure 4a. 11). There were no differences in the increase in mean 

arterial blood pressure associated with fluid resuscitation between groups. Thereafter 

MBP was maintained for the remainder of the study in groups I , I I I , IV and V (Figure 

4a. 11). However, MBP was not maintained after resuscitation with hypertonic 

saline/dextran (Group II). Within 5 minutes of resuscitation MBP in Group I I had fallen 

significanfly (compared to the other groups) by 11,0±8.3 ramHg from an end-

resuscitation level of 75.0±5.8 mmHg, and continued to fall throughout the remainder of 

the study (Figure 4a. 11). Additionally, one rat died within 25 minutes of resuscitation 

with hypertonic saline/dextran while all of the rats resuscitated with the other solutions 

survived until the end of the study, 30 minutes after resuscitation. 
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Figure 4a.ll Effects of resuscitation with various fluids following thoracic blast injury 
and subsequent haemorrhage of 40% total blood volume in anaesthetised 
rats, on heart period (HP) and mean arterial blood pressure (MBP) in 
Group I ; blood ( • ) , Group I I ; hypertonic saline-dextran (•) , Group I I I ; 
haemaccel (o), Group IV; 0.9% saline (A) and Group V; hydroxyethyl 
starch ( A ) . Data recorded immediately before resuscitation (Pre-R), and 
thereafter immediately (End-R) and at 5, 10, 15, 20, 25 and 30 minutes 
after resuscitation. Values are means±S.E.M. 

Associated with the rise in arterial blood pressure immediately after resuscitation there 

was a fall in heart period (Group I) of 15.9± 6.5 ms from a pre-resuscitation value of 

199.2± 10.8 ms, although this did not attain statistical significance (Figure 4a. 11). 

Femoral vascular resistance fell, although not significantly, immediately following 
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resuscitation with whole blood (Group I) from a pre-resuscitation value of 276.26±86.22 

mmHg.min.mL"' to 196.17±25 6 rnmHg.min.mL'' (Figure 4a 9). However, there was a 

significant increase in femoral blood flow in Group I from a pre-resuscitation level of 

0.18± 0.05 mL.min"' to 0.57± 0.06 mL.min"' (Figure 4a. 12). 
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Figure 4a. 12 Effects of resuscitation with various fluids following thoracic blast injury 
and subsequent haemorrhage of 40% total blood volume in anaesthetised 
rats, on femoral arterial blood flow (Fem Q) and femoral arterial vascular 
resistance (FVR) in Group I ; blood ( • ) , Group I I ; hypertonic saline-
dextran (•) , Group I I I ; haemaccel (o), Group IV; 0.9% saline (A) and 
Group V; hydroxyethyl starch ( A ) . Data recorded immediately before 
resuscitation (Pre-R), and thereafter immediately (End-R) and at 5, 10, 
15, 20, 25 and 30 minutes after resuscitation. Values are means+S.E.M. 

There were no differences in the changes in heart period, or femoral vascular resistance 

and flow between groups I , I I I , IV and V immediately following resuscitation, although 

the absolute value of FVR in Group I is significantly higher, and femoral blood flow 

significantly lower than the other groups. The fall in femoral vascular resistance and 

increase in flow immediately after resuscitation was greatest in animals treated with 

hypertonic saline/dextran (Figure 4a. 12), despite this group not showing the greatest 

increase in arterial blood pressure (Figure 4a. 11). However, this effect rapidly waned 

with femoral vascular resistance rising and flow falling (Figure 4a. 12) coincident with the 

fall in arterial blood pressure in this group. By contrast, in all the other groups femoral 

flow was well maintained with little further change in resistance (Figure 4a. 12). 
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In Group I PaOa fell immediately after resuscitation by 11.7+3.2 mmHg from a pre-

resuscitation value of 87.5+2.9 mmHg (Figure 4a.7). There was no difference in the fall 

in Pa02 between groups immediately after resuscitation. Thereafter there was an 

elevation in Pa02 in the groups treated with asanguinous fluids, this change being 

significant and most apparent in the group resuscitated with hypertonic saline/dextran 

which showed a significant rise of 14.5+3.8 mmHg by 30 minutes after resuscitation 

from 87.2+3.8 immediately following resuscitation. PaCOz did not change significantly 

following resuscitation (Figure 4a. 7) except in the group given hypertonic saHne/dextran 

where it had fallen significantly by 4.2+1 mmHg by 30 min after resuscitation, from 

34.2+1.2 mmHg immediately after resuscitation. Directly after resuscitation there was a 

rise in arterial pH in Group I from a pre-resuscitation value of 7.24+0.04 to 7.28+0.02. 

This rise continued throughout the study and there was no difference between all groups 

in pH during or following resuscitation except that treated with hypertonic saline/dextran 

(Group II). In marked contrast arterial pH and base excess fell during resuscitation from 

pre-resuscitation values of 7.3+0.02 and -8.4+0.9 mM respectively, to 7.27+0.02 and -

10.4+0.8 mM respectively, immediately post resuscitation. pH and ABE continued to fall 

significantly during the 30 minutes post-resuscitation in animals treated with hypertonic 

saline/dextran (Figure 4a.7). Arterial pH and base excess was significantly lower 15 and 

30 minutes after resuscitation with hypertonic saline/dextran compared with the other 

groups, reaching levels of 7.19+0.02 (pH) and -16.0+1.5 mM (ABE) by 30 minutes post 

resuscitation with this fluid. 

Haematocrit fell significantly following resuscitation in all groups given asanguinous 

fluids. The fall being greatest in Group V (HES). However, haematocrit rose following 

resuscitation in the animals treated with autologous blood (Group I ; Figure 4a.8). 

Haematocrit was subsequentiy maintained at post-resuscitation levels in the groups 

treated with blood (Group I), both colloids (Groups I I I & V) and 0.9% saline (Group 

IV), with values seen in Group V being significantly lower than those seen in Groups I , 

I I I and IV, while values in Group I were significantly higher than Groups III-V. By 

contrast haematocrit increased significantly in the group treated with hypertonic 

saline/dextran to 30.8+1.8 %>, so that by 30 minutes after resuscitation haematocrit was 

significantly higher in animals treated with hypertonic saline/dextran than in those given 

colloids or 0.9% saline (Figure 4a.8). Indeed, 30 minutes after resuscitation with 
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hypertonic saline/dextran haematocrit was not significantly different to that seen 

immediately before resuscitation (Figure 4a. 8). 

Post mortem Lung Weight Indices were not significantly different between groups 

(Figure 4a. 13). 
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Figure 4a. 13 Effects of various resuscitation fluids following thoracic blast injury and 
subsequent haemorrhage of 40% total blood volume, on post mortem lung 
weight index (post mortem lung weight/body weight) in anaesthetised 
rats. Group I , whole blood. Group I I ; hypertonic saline/dextran, Group 
I I I ; haemaccel. Group IV; 0.9%) saline, Group V; hydroxyethyl starch. 
Values are means±S.E.M. 

4a.4 Discussion 

Thoracic blast injury induced a bradycardia, transient apnoea and hypotension, the latter 

being rapidly but partially resolved. The response to subsequent controlled haemorrhage 

consisted of a progressive bradycardia and hypotension. The new findings from the study 

relate to the effects of subsequent resuscitation and a comparison of the efficacy of five 

resuscitation fluids: whole (autologous) blood, hypertonic saline/dextran, isotonic 

colloids, Haemaccel (modified gelatin) and hydroxyethyl starch, and 0.9%i saline. 

Immediately upon completion of resuscitation the asanguinous fluids were able to restore 

arterial blood pressure and femoral blood flow to pre-haemorrhage levels while blood 

restored these parameters to higher (pre-blast) levels. The effects of all the fluids bar 

hypertonic saline/dextran was sustained for the following 30 minutes until the end of the 

study and resulted in a significant improvement (increase) in arterial pH and base excess. 
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By contrast the effects of hypertonic saline/dextran were vei7 short-lived with arterial 

blood pressure and femoral flow falling within 5 minutes of resuscitation. Coincident 

with this fall in blood pressure and flow there was a marked fall in arterial base excess. 

The hypertonic saline/dextran solution did not attenuate any lung oedema since there 

were no differences in Lung Weight Indices between groups. 

Hypertonic saline/dextran has been reported effective in resuscitation following simple 

haemorrhage (Barros et al. 1999, Corso et a!. 1998) and to increase survival compared 

to normal saline after penetrating injuries (Wade et al. 1997, 1999). In addition, 

hypertonic saline/dextran has been reported effective in increasing cardiac output 

(Murphy et al. 1999) and improving tissue blood flow (Kien et al 1996) following burn 

injuries. The deleterious effects of hypertonic saline/dextran reported from this study 

therefore contrast to its reported effectiveness for resuscitation following haemorrhage in 

the absence of blast injury. However, as mentioned earlier (see section 4a. 1.9) one study 

of HSD resuscitation after haemorrhagic shock in unanaesthetised rats reported an 

increase in blood pressure, which was only sustained for 10 minutes (Chang & Varma, 

1992). This is reminiscent of the present study in which mean arterial blood pressure was 

falling within 5 minutes of resuscitation with HSD. 

The problems associated with hypertonic saline/dextran after blast and haemorrhage 

appears to be specific for this agent rather than being a general problem associated with 

resuscitation. Wikoflf et al (1999) had previously reported that resuscitation per se 

following blast alone was deleterious since it resulted in impaired cardiac performance. 

However, this is not the case following blast and haemorrhage since similar problems 

were not associated with resuscitation using 0.9% saline, colloids or whole blood in the 

present study. 

The marked fall in blood pressure, without evidence of marked vasodilation, in the 

present study is consistent with a decline in cardiac output. It is possible that an impaired 

myocardium after blast (Wikoff et al. 1999) may be adversely affected by hypertonic 

saline/dextran There have been varied reports concerning the cardiac effects of 

hypertonic saline with some suggesting a deleterious effect (Brown el al. 1990) while 

others suggest a positive inotropic effect (Mouren et al. 1995) in isolated hearts. 

However, others have failed to demonstrate any inotropic effect in vivo (Welte et al. 

68 



1995; Ogino et al. 1998). Further studies are now needed to assess cardiac changes 

following blast and haemorrhage and resuscitation with hypertonic saline/dextran, and to 

fiirther investigate whether the deleterious effects of resuscitation with hypertonic 

saline/dextran are due to hypertonic resuscitation per se, or whether it is the combination 

of hypertonic saline with dextran. 

An alternative or additional possibility to account for the reduced blood pressure after 

resuscitation is a rapid fall in venous return after the initial resuscitation with hypertonic 

saline/dextran. Again this is in contrast to the published effects of hypertonic solutions 

after non-blast injuries where the hypertonic solution produces a sustained increase in 

plasma volume by mobilising intracellular water, while the colloid augments plasma 

oncotic pressure (Tollofsurd et al. 1998; Moon et al. 1996; Saxe et al. 1996; Onarheim 

1995) holding fluid in the vessels for longer, as even with hypertonic solutions some fluid 

may still move out the vessel by osmosis following the movement of sodium down its 

concentration gradient. This effect does not appear to be sustained after 

blast/haemorrhage since the initial fall in haematocrit seen after resuscitation with 

hypertonic saline/dextran was rapidly reversed. Again this appears to be a property of 

hypertonic saline/dextran since the reduction in haematocrit seen after resuscitation with 

0.9% saline and colloids was sustained. It is possible that after blast capillary 

permeability is increased due to the direct lung damage caused by a coupling of the blast 

wave with the body (see Chapter 1, sections 1.3 & 1.4) As the pressure wave is 

propagated through the body the capillaries in the lungs may become disrupted leading to 

increased permeability and oedema in the lungs. Indeed haematocrit is increased 10 

minutes after blast (at the start of the haemorrhage) in all groups (Figure 4a.8). Coupled 

with the possibility of an ensuing inflammatory response which may lead to secondary 

lung injury (see section 4a.4.1.2) the further insult of a haemorrhage could possibly 

potentiate this effect (Zunic, 2000). I f permeability is increased enough to allow larger 

molecules to leak out after resuscitation with HSD, the dextran component may be 

leaking into the interstitial space, decreasing oncotic pressure in the vasculature and 

reducing the force which is holding the fluid within this compartment, possibly 

exacerbating any already existing oedema within the pulmonary circulation. 

Anaphylactic reactions to dextran have been reported in both humans (Ljungstrom et al. 

1988; Kreimeier et al 1995) and animals (Hanahoe et al. 1983; KoUer & Reed, 1992; de 

69 



Brito et al. 1982; de Brito & Hanahoe, 1983). Although the incidence in humans was 

reduced to 0.001% in 1985 due to the use of hapten prophylaxis; which consists of a 

preinjection of 20mL of dextran 1 (Ljungstrom et al. 1988, Kreimeier et al. 1995) This 

is in comparison to reports of allergic reactions to hydroxyethyl starch administration, 

which is thought to approach 30% (Spittal & Findlay, 1995). The adverse reaction to 

dextran has been shown to be due to naturally occurring specific antibodies 

predominantly of the IgG class, against the dextran molecule (see Miyamoto & Tashiro, 

1996; Kreimeier et al. 1995), Dextran-induced anaphylactic reactions have been reported 

in patients who are already likely to have an ongoing inflammatory response such as in 

gastric ulcer or cancer patients (see Miyamoto & Tashiro, 1996). It is likely that the 

animals in our study are also experiencing an ongoing inflammatory reaction due to the 

blast injury and subsequent haemorrhage at the time of fluid resuscitation (see section 

4a. 1.5) and so may be more susceptible to suffer anaphylactic reaction to the dextran 

component of HSD. Reports in the literature of anaphylactic reactions to dextran only 

occur within certain colonies of Wistar rats (Hanahoe et al. 1983; Koller & Reed, 1992; 

de Brito et al. 1982; de Brito & Hanahoe, 1983). This would lead to an inflammatory 

response and an increase in capillary fluid fihration (Koller et al. 1997) and tissue 

oedema (de Brito & Hanahoe, 1983). Associated with this, dextran is also reported to 

induce a significant hypotension (Hoem et al. 1986). This may be the reason for the 

deleterious effect of HSD resuscitation in the present study. Blood pressure in the HSD 

treated animals began to fall within 5 minutes of resuscitation with this fluid. Systemic 

oedema due to dextran-induced anaphylaxis could explain the increase in arterial oxygen 

tension after HSD resuscitation. Systemic oedema would increase the diffusion barrier 

and decrease oxygen extraction from the blood. Further tests are now required to 

determine whether the adverse reaction to HSD resuscitation after blast and 

haemorrhage is due to dextran-induced anaphylaxis in this strain of rat. However, it must 

be stressed that in the literature it is reported to be rats from the Tuck colony which 

display dextran allergy (de Brito & Hanahoe, 1983) and the colony used in this study is 

the CFHB strain originating from Carworth, Europe. 

Hypertonic saline/dextran did not reduce Lung Weight Index (LWI) in the present study. 

This is consistent with a report by Cohn et al (1997) which indicated that hypertonic 

saline did not reduce the magnitude of lung injury or provide any physiological benefits 

over isotonic solutions following pulmonary contusions. However, HSD did not increase 

70 



LWI either. I f an anaphylactic reaction to HSD had occurred, the increase in capillary 

fluid permeability may lead to tissue oedema in the systemic circulation rather than in the 

lungs. As mentioned in the previous paragraph, the increase in Pa02 seen after 

resuscitation with hypertonic saline/dextran may not be indicative of improved 

pulmonary gas transfer, but rather may be due to poor oxygen extraction in the systemic 

circulation possibly due to an increase in the diffusion barrier between the capillaries and 

the tissue. Consistent with this it can be seen that the low arterial blood pressure and 

blood flow following resuscitation with hypertonic saline/dextran are associated with 

indices of severe metabolic disturbance: severe acideamia and negative base excess. A 

number of factors are likely to contribute to this. Firstly, low blood flow as a 

consequence of the reduced arterial blood pressure will reduce oxygen delivery. 

Secondly, any increase in systemic interstitial water is likely to increase the diffusion 

barrier for oxygen, and hence reduce oxygen extraction. In this context it is interesting to 

note that resuscitation with hypertonic saline/dextran is not reported to improve acid 

base balance (O'Bennar et at. 1998) and exacerbates base deficit (Cohn et al. 1997) even 

in situations where oxygen delivery is improved. Further studies are now needed to 

assess the microcirculatory effects of resuscitation with hypertonic saline/dextran after 

blast and its effects on tissue oxygen transport. 

4a.4.1 Possible mechanisms of ischaemia reperfiision injuries following a primary blast 

injury and subsequent haemorrhage. 

The potential for secondary damage following blast injury and its hypoxic consequences 

will form the basis for fijture studies in this field and so it is important to understand the 

basis of this secondary damage including the role of hypoxia and tissue mediators in this 

response. 

The mechanism of the lung damage suffered by a blast victim may fall into two 

categories: direct lung injury and an inflammatory response initiated in the lungs or other 

organ systems by hypoxia which may, in turn, amplify the pulmonary insult and lead to 

an escalating whole body inflammatory response. Subsequent haemorrhage may augment 

this effect. Resuscitation with certain fluids may protect from this damage and some may 

not. 
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4a.4.1.1 Direct lung damage 

Primary blast injury is known to cause lung injury (see Chapter 1, sections 1.3 & 1.4). 

The most notable and immediately life-threatening injury is blast lung (Cooper, 1996). 

The gross pulmonary changes associated with this include pulmonary contusion (Hunter, 

1941), pulmonary oedema (Zuckerman 1940; Brown et al. 1993) and reduced gas 

transfer (Damon et al. 1971) resulting in a low Pa02 and tissue hypoxia (see Figure 

4a. 14) a known trigger for an inflammatory response (Combe et al. 1997; Michiels et al. 

1996). In addition to these changes, which may themselves lead to death over a period of 

hours, there are early cardiovascular and respiratory changes that can contribute to 

morbidity and mortality. 

4a.4.1.2 Secondary lung damage 

In addition to causing reduced oxygen levels in blood, the response to blast may cause 

cardiovascular changes which Hirther reduce the delivery of oxygen to tissues, which in 

turn can initiate or amplify an inflammatory response contributing to secondary lung 

damage. The cardiovascular changes induced by blast include a transient apnoea and 

long-lasting bradycardia and hypotension (Guy el ai 1998; Ohnishi et al. 2001; Sawdon 

et al In press; see also Chapter 3). Factors involved in the hypotension include a 

reduction in vascular resistance (see Figure 4a. 6) and possibly impaired cardiac function 

(Harban et al. 2001), both of which can contribute to haemodynamic compromise and 

shock (failure of oxygen delivery to meet demand). 

Blast victims may also suffer a haemorrhage, which is likely to exacerbate the hypoxia. 

During haemorrhage, microcirculatory blood flow and hence oxygen delivery to the 

microvasculature decreases. Insufficient oxygen to the endothelial cells results in cell 

swelling reducing the lumen of the capillaries and hindering blood flow further (see 

Menger et al. 1992; Mazzoni et al. 1989). The increased resistance in these vessels may 

lead to shunting of blood flow towards vessels with a lower resistance reducing 

functional capillary density, further augmenting the hypoxia and inflammatory response 

(see Figure 4a. 14), 

It is now widely accepted that shock can initiate a widespread inflammatory response 

(see Figure 4a. 14) which leads to secondary injury This secondary injury can become 
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manifest as damage and dysfunction in a number of organs including the lungs where 

Adult Respiratory Distress Syndrome (ARDS) may develop (Pepe et al. 1982; Hudson et 

al. 1995) and the gut where breakdown of the gut mucosal barrier and 

bacterial/endotoxin translocation may ensue (Deitch et al. 1988) possibly coupled with 

hepatic dysfunction (Rensing et al. 1999). Damage to these organs are particularly 

threatening since ARDS can lead to further failure of oxygen delivery while 

intestinal/hepatic damage can lead to sepsis () which in turn causes further inflammation 

and organ damage. 

Thus, regardless of whether the hypoxia is the consequence of primary or secondary lung 

injury it is likely to initiate a widespread inflammatory response affecting other organs 

since the trigger for this is reduced oxygen delivery (possibly followed by re-

oxygenation), which will occur regardless of whether the initial deficit is cardiovascular 

or pulmonary (see Figure 4a. 14). 

4a. 4.2 The inflammatory response 

The inflammatory response is orchestrated by the vascular endothelium. This involves a 

sequential expression of molecular mediators. A key element of the inflammatory 

response is the activation of leukocytes and transmigration from blood across the 

vascular endothelium of postcapillary venules (and capillaries in the lungs) into the tissue. 

This process is divided into stages of circulatory leukocyte margination and rolling along 

the endothelium, arrest of rolling and penetration into the tissues. The sequential 

appearance of molecular mediators is summarised in Table 4a . 3 
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Table 4a.3 Molecular markers and mediators of the inflammatory response 

Stage Molecular 
mediator/marker 

Timing Stimulus 

Margination and 
rolling 

Low aflfmity binding 
between endothelial 
P- and E-selectins 
and neutrophil 
PSGL-1 and L-
selectin 

P-selectin appears 
within 20 min of 
injury and E-selectin 
appears within 2 
hours 

Host of stimuli 
including IL-1 p and 
TNFa released by 
lung macrophages in 
response to injurious 
stimuli. Other 
mediators include 
oxygen radicals, 
activated complement 
etc. 

At this point the process may be aborted by anti-inflammatory mediators including 
glucocorticoids, IL-10 and NO. Otherwise the inflammatory process continues as follows 
Arrest of rolling A range of adhesion 

molecules on the 
endothehal surface 
including ICAM-1 
and 2 and VCAM-1 
forming high affinity 
bonds with leukocyte 
adhesion molecules 
including LFA-1 and 
MAC-1 

6-9 h after injury IL- lp and TNFa 

Leukocyte activation IL-8 secreted by 
endothelium 

6-9 h after injury IL- lp and TNFa 

Leukocyte 
transmigration 

Aided by endothelial 
PEC AM-1 

IL-8, Complement 5a 

This leads to increased capillary permeability and tissue oedema. Endothelial cells further 
damaged by IL - ip and TNFa and by the secretion of elastase by activated neutrophils 

ICAM-1 and 2, intercellular adhesion molecules 1 and 2; IL-10, IL- ip , IL-8, interleukins 
Ip, 8 and 10; LFA-1, leukocyte function associated antigen-1 or CD! la/CD 18; MAC-1, 
macrophage-1 antigen or CD lib/CD 18; NO, nitric oxide; PECAM-1, platelet-
endothelial cell adhesion molecule 1; PSGL-1, P-selectin glycoprotein ligand 1; TNFa, 
tumour necrosis factor a; VCAM-1, vascular cell adhesion molecule 1. 

As a consequence of the appearance or upregulation of a number of these mediators e.g. 

ICAM-1 and VCAM-l in tissue, increased levels of activated neutrophils and IL-8 in 

pulmonaiy lavage fluid or evidence of increased microvascular permeability e.g. oedema, 

leakage of large molecules such as albumin from the vascular space are used as indices of 

an ongoing inflammatory response. The use of a number of these markers has now 
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become established in rat lung and other tissues. Thus, it has recently been shown that 

haemorrhagic shock leads to an upregulation of the levels of ICAM-1 and VCAM-1 in 

the rat lung, and that this can be modulated by the nature of fluid used for resuscitation 

(Sun et al. 1999). Thus fluid resuscitation aims to target several points within this vicious 

circle of inflammation. HSD was chosen in this particular study as it is reported in the 

literature to be particularly effective in improving microcirculatory blood flow by 

reducing vascular endothelial cell swelling (Mazzoni, 1990). It is reported to prevent P-

selectin upregulation following haemorrhagic shock (Akgur et al. 1999) and also shows 

free-radical scavenging properties (Brown et al. 1990; Haljamae, 1985), as well as 

reportedly inhibiting neutrophil activation (Sheilds et al. 2000) and post-ischaemic 

leukocyte adherence and transmigration through the vascular endothelium (Corso et al. 

1999; Nolte, 1992), and thus is claimed to have the potential to limit the effects of 

ischaemia reperflision injuries and attenuate end organ damage following a systemic 

inflammatory response. However, this appears to be contrary to the effects of HSD in 

this study. HSD failed to maintain blood pressure and femoral arterial blood flow 

following thoracic blast injury and haemorrhage and this was associated with severe 

acidaemia and negative base excess; indices of severe metabolic disturbance. An 

important future study should therefore aim to determine whether there is any 

inflammatory response after thoracic blast injury and haemorrhage by measuring 

inflammatory mediators such as lCAM-1 and VCAM-1, as well as markers of tissue 

damage to assess secondary organ injury such as a-glutathione-S-transferase (Redl et al. 

1995; Rensing et al. 1999) a sensitive and specific marker of hepatocellular injury. 
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Figure 4a. 14 Summary of escalating inflammatory response from an initial primary blast 
injury and subsequent haemorrhage 

Blast injury - • haemorrhage 

pnmary lung mjury secondarv' lung injur>' 

oedema 

Reduced gas 
transfer 

Reduced blood flow to vital 
organs 
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hypoxia 

inflammation 

In conclusion the present study has shown that animals subjected to thoracic blast injury 

and severe haemorrhage can be resuscitated early with whole blood, isotonic saline and 

colloids (Haemaccel and hydroxyethyl starch), resulting in a restoration of arterial blood 

pressure, femoral blood flow and acid base status which is sustained for at least 30 

minutes The use of hypertonic saline/dextran is contraindicated following thoracic blast 

and haemorrhage since the effect is not sustained. 
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4b Pulmonary and Cardiovascular Effects of Delayed Resuscitation 

after Thoracic Blast and Blood Loss: Comparison of Whole 

Blood, Isotonic Saline and Colloid with Hypertonic 

Saline/Dextran 

4b. 1 Introduction 

In the first section of this chapter (Chapter 4a) the effects of early resuscitation with 

autologous blood, 0.9% saline, 2 colloids (modified gelatin in the form of Haemaccel 

and hydroxyethyl starch) and hypertonic saline/dextran (HSD) following thoracic blast 

injury and haemorrhage were determined. The results showed that resuscitation with 

blood, normal saline and both colloids effectively increased mean arterial pressure and 

femoral arterial blood flow to pre-blast levels in the normal saline and colloid groups, 

and to levels higher than pre-blast in the whole blood group. These increases in blood 

pressure and femoral blood flow were sustained throughout the remainder of the study 

with no obvious detriment in the groups resuscitated with whole blood, normal saline or 

isotonic colloid. This was in contrast to the effects of resuscitation with HSD. Here the 

initial increase in mean arterial blood pressure and femoral blood flow was short-lived 

and both began to fall within 5 minutes of infusion of HSD. An ensuing metabolic 

acidosis was also apparent in the HSD group but was absent from the other groups. 

This section of Chapter 4, and Chapter 5 aims to address the following questions; is the 

apparent detrimental effect of resuscitation with HSD following thoracic blast injury 

and blood loss simply due to its hypertonicity or were these subjects resuscitated too 

early after the insult? This latter question will be the focus of the remainder of this 

chapter with chapter 5 addressing the question of hypertonicity. 

It is reported in the literature (Bickell et al. 1994; see Nolan, 1999) and often practised 

clinically (ATLS guidelines) to aUow permissive hypotension in some hypovolaemic 

patients i f immediate definitive treatment cannot be given. It is currently unknown 

however whether this will be beneficial or detrimental after a blast injury. The majority 

of casualties in a combat setting require early vigorous resuscitation with fluids 

(Weideman et al 1999). However, recently animal studies have shown that resuscitation 

too soon after an uncontrolled haemorrhage will increase blood pressure, reverse 
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vasoconstriction, dislodge any thrombus formation and thus increase blood loss. The 

consequent decrease in oxygen delivery is reflected in the subsequent metabolic 

acidosis that develops (Bickell et al 1989; Stern et al 1993, see Nolan 1999). Indeed 

there are numerous reports in the hterature of immediate resuscitation of haeraorrhagic 

shock increasing the rate, volume and duration of haemorrhage (Sakles et al. 1997; 

Bickell et al. 1992; Krausz et al 1992; Marshall et al 1997; Stern et al 2000), as well 

as increasing mortality (Bickell et al 1992; Krausz et al. 1992; Marshall et al 1997; 

Stern et al. 2000). One study showed significantly higher survival rates in those left 

unresuscitated when compared to those resuscitated with hetastarch (Craig et al 1994), 

hypertonic saline (Solomonov et al. 2000) and in cases of penetrating torso injuries 

(Bickell et al. 1994; see Wade et al 1997). Vassar and colleagues commented in 1993 

that the exacerbated blood loss in animal models by hypertonic resuscitation is unlikely 

to be relevant in a clinical trauma setting as a clot would already have had chance to 

form, i.e., resuscitation is already delayed. Others claim that hypertonic resuscitation 

will dislodge an already formed early thrombus (Bickell et al 1989; Stern et al 1993, 

see Nolan 1999). However, Stern and colleagues' model of uncontrolled haemorrhage 

involves a single tear to a large vessel (1993), where early resuscitation might indeed be 

detrimental. However, i f the haemorrhage were due to smaller amounts of damage to 

multiple smaller vessels then secondary organ damage resulting from prolonged 

hypotension may be the predominant risk and early fluid resuscitation to reperfuse vital 

organs may be the more beneficial option. It must be stressed however that most of the 

studies mentioned involve resuscitation of an uncontrolled haemorrhage (Craig et al. 

1994; Solomonov et al 2000; Bickell et al. 1989; Marshall et al 1997; Stern et al. 1993 

& 2000), whereas all the studies involving blood loss reported in this thesis are volume 

controlled. 

The haemodynamic and cardiovascular effects of early resuscitation of primary thoracic 

blast injury and haemorrhage with whole (autologous) blood, normal (0.9%) saline, 2 

colloids (modified gelatin in the form of Haemaccel, and hydroxyethyl starch; HES) and 

hypertonic saline/dextran have been investigated (Chapter 4a), Early resuscitation with 

HSD in this setting of blood loss on a background of thoracic blast injury was 

deleterious, with one subject not surviving the duration of the study (which was only 30 

minutes post resuscitation). Therefore, this section will aim to reflect the more common 

clinical practice of delaying resuscitation. 
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The aim of the present study was to compare the cardiovascular and haemodynamic 

effects of delayed resuscitation with autologous whole blood, isotonic colloid (modified 

gelatin, Haemaccel), isotonic crystalloid (0.9% saline) and hypertonic saline/dextran 

solutions following thoracic blast and a haemorrhage of 40% blood volume (to reduce 

the number of animals used in this study only one colloid will be analysed). In addition, 

the pulmonary effect (as different fluids are reported to produce differing effects on 

pulmonary oedema; see section 4a. 1.5 and 4a.4.2) was assessed by measuring post

mortem lung weight ratios and arterial blood gases during the experiment. 

4b.2 Methods 

The experiments were conducted on male Wistar rats (Harlan Olac, body weight 237-

282g) which were terminally anaesthetised and prepared for recording as described in 

Chapter 2. 

4b. 2.1 Experimental protocol 

Upon completion of the surgery the rats were positioned supine in the blast apparatus 

with the ventral thorax 3.5 cm below the blast nozzle (which delivers the blast wave to 

the animal; see Chapter 2, section 2.2). The animals were then allowed to stabilise for 1 

h under alphadolone/alphaxolone (Saffan^* '̂, Pitman-Moore, UK) anaesthesia prior to 

exposure to blast. The infusion rate of anaesthetic wa:s adjusted within the range 19-24 

mg.kg'Vh"' to maintain an experimental level of anaesthesia (mild withdrawal and a 

pressor response of approximately 10 mmHg to a noxious pinch of the foot). 

Following baseline cardiovascular, respiratory and blood gas measurements the protocol 

shown diagrammatically in Figure 4b. 1 was then followed. A pressure of 1500 psi was 

generated in the blast apparatus and all animals received a single discharge from the 

apparatus to the ventral thorax. Ten minutes later the animals were subjected to a 

controlled haemorrhage. Blood was withdrawn anaerobically from the ventral tail artery 

in 12 equal aliquots at an overall rate of 2% estimated total blood volume per minute 

(6.06 mL.lOOg"' body weight, Elebute et al. 1978) until 40%) of the total estimated 

blood volume had been withdrawn. The animals were then randomly allocated to groups 
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I-IV (see Table 4b. 1) and resuscitated with one of the following given intravenously via 

the tail vein at the standard clinical rate of l .lmL.kg"'.min"' (with the exception of 0.9% 

saline which was administered at the standard clinical rate for crystalloid solutions: 

3.3mL.kg"'.min') and the standard clinical volume replacement (1:1 resuscitation 

volume:blood loss for whole blood and isotonic colloids, 3:1 resuscitation volume:blood 

loss for isotonic crystalloids, and 4mL.kg"' for hypertonic solutions; ATLS guidelines) 

• anti-coagulated (heparinised with Monoparin, CP Pharmaceuticals, UK) 

autologous blood (1:1 resuscitation volume:blood loss) 

• isotonic colloid solution (modified gelatin, Haemaccel, Hoechst Marion Roussel, 

Germany, 1:1 resuscitation volume:blood loss) 

• isotonic crystalloid solution (0.9% saline, Fresenius Kabi Ltd, UK, 3:1 

resuscitation volume:blood loss) 

• hypertonic saline/dextran (RescueFlow®, 7 5% saline/6% dextran 70, 

4 mL.kg ') 

Each of the groups indicated above were resuscitated 20 min after the end of 

haemorrhage. The delay of 20 minutes between the end of haemorrhage and the onset of 

resuscitation was chosen empirically to reflect potential clinical practice. 
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Protocol 

Thoracic blast Resuscitation 

Haemorrhage 40% BV at 2% BV min -1 continued recording for 30 
min post resuscitation 

Time (min) 0 10 

Blood Loss (%) 0 0 

40 60 82 

40 

112 

Group Haemorrhage Blast 

II 

Ul 

IV 

+ 

+ 

+ 

Resuscitation Fluid 

+ blood n=5 

+ 7.5% saline/6% dextran n=5 

+ modified gelatin (Haemaccel) n=5 

+ 0.9% saline n=5 

Figure 4b. 1 Diagrammatic representation of the protocol used in this study (see 
section 4b.2.1 for fijll explanation). Plus sign (+) indicates presence of 
haemorrhage and blast injury in that group. 
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Table 4b. 1 Summary of treatments: all groups were subjected to thoracic blast 
followed 10 min later by a progressive haemorrhage of 40% total 
estimated blood volume (BV) at 2% BV.min"' then resuscitated with 
one of the following fluids; 

Resuscitation fluid Group 

(resuscitated 20 min after 
haemorrhage) 

Anti-coagulated autologous 
blood (1:1 resuscitation 
volume:blood loss) 

I 

Hypertonic saline/dextran 
(7.5% saline/6% dextran 70, 
4 mL.kg"') 

I I 

Isotonic colloid solution 
(modified gelatin, 
Haemaccel, 1:1 resuscitation 
volume:blood loss) 

I I I 

Isotonic crystalloid solution 
(0.9% saline, 3:1 
resuscitation volume:blood 
loss) 

IV 

Cardiovascular measurements were made from 1 min before blast continuously until 5 

min after blast, immediately before haemorrhage, after the removal of each aliquot of 

blood during haemorrhage, at 5 minute intervals following the end of haemorrhage for 

up to 20 minutes, immediately before resuscitation, at 5 min intervals during 

resuscitation and thereafter immediately, 5, 10, 15, 20, 25 and 30 minutes after 

resuscitation. Blood gas analysis (ABL5™, Radiometer, Denmark) and haematocrit 

values (Hawksley micro-haematocrit reader) were obtained for samples taken 

immediately before blast, the first and last samples taken during haemorrhage, 

immediately after resuscitation and at 15 and 30 minutes after resuscitation. Duration of 

apnoea was determined visually and timed using a stopwatch. 

Al l animals were killed 30 minutes after the end of resuscitation with an overdose of 

0.5mL of 60mg.mL"' (106-127 mg.kg"') sodium pentobarbitone (Sagatal, Rhone 

82 



Merieux (Ireland) Tallaght, Dublin) administered intravenously. The lungs were 

removed and weighed to determine Lung Weight Index (lung weight^ody weight). 

4b.3 Results 

4b. 3.1 Baseline values 

Baseline (pre-blast) values for each group are presented in Table 4b.2. There were no 

significant differences between groups in the baseline cardiovascular or arterial blood 

gas variables, body weights or body temperature, with the following exceptions; ABE 

was significantly lower in Group I I when compared to Groups I and IV, whereas arterial 

pH was significantly higher in Group I when compared to Group IE. However, although 

these differences were statistically significant they were very small compared to the 

effects of blast and/or haemorrhage and were of little physiological significance. 

Femoral vascular resistance was significantly higher in Group I I I compared to Groups I 

and I I . Body temperature did not change significantly during the course of the study in 

any group. 

Group I Group n Group in Group IV 
n 5 5 5 5 
Body wt (g) 258±8 254±8 252±3 248±3 
HP (ms) 154.7±4.4 147.2±2.2 149.5±4.6 146.6±3.4 
MBP (mniHg) 106.2±4.2 101.4±2.2 105.8±4.2 106.8±1.9 
Fern Q (niL.iiiin ') 1.1±0.3 1.2±0.1 0.8±0.1 l . l iO. l 
FVR 70.5±6.2 88.5±6.5 I55.9±24.9 99.1±11.2 
(mniHg.inin.niL"') 
PaOj (mniHg) 91.Oil.2 87.2±1.3 87.0±1.3 88.8±2.9 
PaC02 (mniHg) 34.6±1.2 32.4±0.8 36.2±0.9 37.8±2.2 
apH 7.37±0.01 7.35±0.00 7.35±0.00 7.37±0.01 
ABE (niM) -3.5±0.87 -6.2±0.4 -5.0±0.6 -3.2±0.7 
Hcrit (%) 31.5±1.9 31.6±0.8 34,1±1.0 31.8±1.8 
Temp (oC) 37.5±0.4 37.8±0.1 37,1±0.2 37.3±0.2 

Table 4b.2 Baseline (pre-blast) values recorded in four groups of anaesthetised rats. 
Number of rats («); body weight (body wt); Heart period (HP); mean 
arterial blood pressure (MBP); femoral arterial blood flow (Fem Q); 
femoral vascular resistance (FVR); arterial oxygen tension (PaOa); 
arterial carbon dioxide tension (PaC02); arterial pH (a pH); actual base 
excess (ABE); haematocrit (Hcrit); and body temperature (Temp). 
Values are mean ± SEM. 
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The effects of blast, haemorrhage and subsequent resuscitation were qualitatively 

similar to those reported for early resuscitation (see Chapter 4a). 

4b . 3 .2 Effects of thoracic blast 

Thoracic blast (Group I) produced a significant increase in heart period of 388±64.4 ms 

from a pre-blast control of 154.7±4.4 ms and a significant fall in mean blood pressure of 

7I.1±2.9 mmHg from a pre-blast level of 106.2±4.2 mraHg (Figure 4b.2). Thereafter 

there was a rapid recovery in heart period and a partial recovery in mean arterial blood 

pressure (MBP). 
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Figure 4b. 2 Effects of 
a thoracic blast injury in 
anaesthetised rats on 
heart period (HP) and 
mean arterial blood 
pressure (MBP) in 
Group I (•) , Group I I 
( • ) , Group in (o) and 
Group IV (A). Data 
recorded immediately 
before blast (C), and 
thereafter immediately 
after blast (0), and at 5 
and 10 minutes after 
blast. Values are 
means±S.E.M. 

In addition, thoracic blast produced a significant (Student's independent / test) apnoea 

lasting 21.4±2.7 seconds in Group I (Figure 4b.3). 
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Figure 4b.3 Duration 
of apnoea following 
primary thoracic blast 
injury in four groups of 
anaesthetised rats. 
Values are 
means+S.E.M. 
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Furthermore, in Group I , blast produced a transient fall in femoral arterial blood flow of 

0.81±0.28 mL.min"' from a pre-blast control of 1.1±0.25 mL.min ' (Figure 4b.4), and a 

transient fall in femoral arterial vascular resistance of 16.0±3.5 mmHg.min.mL"' from a 

pre-blast level of 70.5±6.2 mmHg.min.mL"' (Figure 4b.4). 
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Figure 4b.4 Effects of a 
thoracic blast injury in 
anaesthetised rats on femoral 
arterial vascular resistance 
(FVR) and femoral arterial 
blood flow (Fem Q) in Group I 
(•) , Group I I (•) , Group HI (o) 
and Group IV (A). Data 
recorded immediately before 
blast (C), and thereafter 
immediately after blast (0), and 
at 5 and 10 minutes after blast. 
Values are means±S.E.M. 
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Ten minutes after blast heart period was still elevated and MBP was still significantly 

below pre-blast levels in Group I . Following blast there was a significant fall in Pa02 of 

23.40±1.17 mmHg in Group I , from a control pre-blast value of 91.00±1.22 mmHg, and 

a decrease in arterial pH of 0.05±0.01 from a pre-blast control of 7.37±0.01 (Figure 

4b.5). 
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Figure 4b.5 Effects of blast, haemorrhage and subsequent resuscitation in 
anaesthetised rats on arterial oxygen tension (Pa02), arterial carbon 
dioxide tension (PaC02), arterial pH (art pH) and arterial base excess 
(ABE). Group I ; blood (•) , Group I I ; hypertonic saline/dextran (•) , 
Group ID; haemaccel (o) and Group IV; 0.9% saline (A). Data recorded 
immediately before blast (Pre-B), at the start of a haemorrhage of 40% 
total blood volume (Start H), at the end of haemorrhage (End H), at the 
end of fluid resuscitation (End R) and thereafter at 15 and 30 minutes 
after resuscitation. Values are means±S.E.M. 

Following thoracic blast there was a significant rise in PaC02 in Group I , of 8.6±1.5 

mmHg from a pre-blast control level of 34.6±1,2 mmHg (Figure 4b,5) and haematocrit 

increased significantly following blast from a pre-blast level of 31,5±1,9 % to 38,1±0,49 

%r(Figures 4b,6), There was no significant change in ABE during this period (Figure 

4b.5), Thoracic blast in Groups II-IV produced effects on the above parameters similar 

to those seen in Group I ; there were no significant differences between groups for the 

first 10 minutes after blast. 
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Figure 4b.6 Effects o f blast, haemorrhage and subsequent resuscitation in 
anaesthetised rats on haematocrit (Hct). Group 1; blood ( • ) , Group I I ; 
hypertonic saline/dextran ( • ) , Group I I I ; haemaccel (o) and Group IV; 
0.9% saline (A). Data recorded immediately before blast (Pre-B), at the 
start o f a haemorrhage o f 40% total blood volume (Start H), at the end of 
haemorrhage (End H), at the end o f f luid resuscitation (End R) and 
thereafter at 15 and 30 minutes after resuscitation. Values are 
means±S.E.M. 

4b.3.3 Effects of progressive haemorrhage 

Haemorrhage o f 40% blood volume, initiated 10 minutes after thoracic blast, induced a 

significant change in heart period (Figure 4b.7) and mean blood pressure in all groups 

(Figure 4b.7). There was no evidence o f the first, tachycardic, phase o f the response to 

blood loss normally associated with haemorrhage in the absence of thoracic blast injury. 

The following section wi l l compare the peak changes in heart period from each 

individual animal. 

Figure 4b.7 Effects o f a 
progressive haemorrhage o f 
40% total blood volume 
following a thoracic blast 
injury in anaesthetised rats on 
heart period (HP) and mean 
arterial blood pressure (MBP) 
in Group I ( • ) , Group I I ( • ) , 
Group I I I (o) and Group I V 
(A). Values are means±S.E.M. 
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Animals in Group I showed no significant tachycardia, while the bradycardia 

(significant peak increase in heart period o f 13.4±2.1 ms; Student's paired t test, 

geometric mean) was seen after the loss o f 20.0±7.0 % blood volume (Figure 4b.7). 

Furthermore, mean arterial blood pressure was not maintained in Group I during the 

haemorrhage and began to fa l l after the removal o f the first aliquot o f blood, the 

hypotension being significant after the loss o f 16.7 % B V (Figure 4b.7). There was no 

significant difference between groups in the peak increase in heart period seen during 

blood loss. There was no difference in the pattern o f change in blood pressure induced 

by haemorrhage between groups I , I I I and I V , however the pattern was significantly 

different in group I I where blood pressure was initially maintained before falling as 

blood loss exceeded 23.3%BV. Associated with the fall in arterial blood pressure there 

were significant reductions in femoral arterial flow in all groups (Figure 4b.8). 

However, there was no evidence o f a change in femoral vascular resistance during the 

blood loss (Figure 4b.8). 

By the end o f the haemorrhage Pa02 (Group I) had increased significantly by 34.4±5.41 

mmHg fi-om a pre-haemorrhage value o f 67.6±1.17 mmHg (Figure 4b.5) while there 

was no significant change in PaC02 (Figure 4b.5). There was a significant fal l in arterial 

pH and base excess (Group I) o f 0.03±0.02 (pH) and 4.0±1.1 m M fi-om a pre-

haemorrhage level o f 7.32±0.01 (pH) and -4 .0±0.9 m M respectively (Figure 4b.5). 

Haeniatocrit (Group I) also fell significantly by 5.2±0.5 % fi-om a pre-haemorrhage 

control o f 38.1±0.5 % (Figure 4b.6). There were no significant differences between 

groups in the pattern o f blood gas and haematocrit changes during haemorrhage. 
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Figure 4b. 8 Effects of a 
progressive haemorrhage o f 
40% total blood volume 
following a thoracic blast 
injury in anaesthetised rats on 
femoral arterial vascular 
resistance (FVR) and femoral 
arterial blood flow (Fem Q) 
in Group I ( • ) , Group I I ( • ) , 
Group I I I (o) and Group I V 
(A). Values are means!S.E.M. 
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4b. 3 .4 Effects of 20 minute post-haemorrhage hypotensive period 

Following a 40% haemorrhage MBP (Group I) increased significantly over a 20 minute 

period by 29.7±5.0 mmHg from an end-haemorrhage level o f 26.1±3 .5 mmHg (Figure 

4b.9). There was also a fall in heart period over this time, but this did not attain 

statistical significance (Group I ; Figure 4b.9). 
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Figure 4b.9 Heart period (HP) and mean arterial blood pressure (MBP) following 
thoracic blast injury and a progressive haemorrhage of 40% total blood volume in 
anaesthetised rats. Group 1 ( • ) , Group I I ( • ) , Group I I I (o) and Group I V (A). Data 
recorded immediately at the end of haemorrhage (0), 5, 10, 15 and 20 minutes after 
haemorrhage. Values are means±S.E.M. 

Concomitant with the rise in blood pressure, there was a significant increase in femoral 

blood f low during the 20 min after blood loss, but there was no significant change in 

femoral vascular resistance (Figure 4b. 10). There were no significant differences 

between groups in heart period, mean blood pressure, femoral blood f low or femoral 

vascular resistance during this 20 minute post-haemorrhage period. 
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Figure 4b.10 Femoral 
arterial vascular resistance 
(FVR) and femoral arterial 
blood flow (Fem Q) 
fol lowing thoracic blast 
injury and a progressive 
haemorrhage o f 40% total 
blood volume in 
anaesthetised rats. Group I 
( • ) , Group I I ( • ) , Group I I I 
(o) and Group I V (A). Data 
recorded immediately at the 
end o f haemorrhage (0), 5, 
] 0, 15 and 20 minutes after 
haemorrhage. Values are 
means±S.E.M. 

20 

4b.3.5 Effects of resuscitation 20 minutes after haemorrhage 

Twenty minutes after the end o f haemorrhage animals in groups I - IV were resuscitated 

with autologous blood (Group I), hypertonic saline/dextran (Group I I ) , colloid 

(Haemaccel, Group I I I ) or 0.9% saline (Group IV) . Resuscitation with whole blood 

(Group I) induced a significant elevation in mean arterial blood pressure of 57.35±6.8 

mmHg from a pre-resuscitation level o f 55.84±4.9mmHg (Figure 4b. 11). Although each 

fluid produced a significant increase in blood pressure, resuscitation with whole blood 

produced a significantly greater increase in blood pressure than was seen after 

resuscitation with HSD. There were no other differences between groups in the initial 

increase in blood pressure produced by resuscitation. Thereafter MBP was maintained 

for the remainder o f the study in groups I, I I I , and I V (Figure 4b. 11). However, MBP 

was not maintained after resuscitation with hypertonic saline/dextran (Group II) . Within 

5 minutes of resuscitation MBP in Group I I had fallen significantly (compared to the 

other groups) by 23 .2±5 .2 mmHg from an end-resuscitation level o f 92.1 ±5.5 mmHg, 

and continued to fall over the subsequent 5 minutes, thereafter remaining low for the 

remainder of the study (Figure 4b. 11). 
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Figure 4b. I I Effects of resuscitation with various fluids fol lowing thoracic blast injury 
and subsequent haemorrhage o f 40% total blood volume in anaesthetised 
rats, on heart period (HP) and mean arterial blood pressure (MBP) in 
Group I ; blood ( • ) , Group I I ; hypertonic saline/dextran ( • ) , Group I I I ; 
haemaccel (o) and Group IV; 0.9% saline (A). Data recorded 
immediately before resuscitation (Pre-R) and thereafter immediately after 
resuscitation (End-R) and at 5, 10, 15, 20, 25 and 30 minutes after 
resuscitation. Values are means±S.E.M. 

There was no significant change in heart period immediately after resuscitation in any 

group (Figure 4b. 11). However, within 10 minutes o f resuscitation with HSD (Group I I ) 

heart period had fallen significantly by 24,9±2.6 ms f rom the end-resuscitation level of 

147.9±2.4 ms (Figure 4b. 11). Thereafter there was no significant change in heart period 

in any group for the remainder o f the study (Figure 4b. 11). 

Concomitant wi th the increase in blood pressure, there was a significant increase in 

femoral blood flow in Group I f rom a pre-resuscitation level o f 0.39± 0.14 mL.min' ' to 

1.05± 0.32 mL.min"' (Figure 4b. 12). The increase in blood flow was significantly 

greater in the saline-treated group (Group IV) compared to the Haemaccel-treated group 

(Group I I I ) , there being no other differences between groups up to this time point 

(Figure 4b. 12). Thereafter blood flow was not sustained in Group I I (HSD) and showed 

a persistent fall until the end o f the study (Figure 4b. 12). 

There was a small fall in femoral vascular resistance immediately following 

resuscitation in Groups I , I I and IV , although this change was not statistically significant 

in any group (Figure 4b. 12). Overall, there was a significant increase in vascular 
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resistance during the 30 min post-resuscitation, this effect being most pronounced in the 

HSD and Haemaccel-resuscitated groups (Groups I I and I I I respectively. Figure 4b. 12). 
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Figure 4b. 12 Effects of resuscitation with various fluids following thoracic blast injury 
and subsequent haemorrhage o f 40% total blood volume in anaesthetised 
rats, on femoral arterial vascular resistance (FVR) and femoral arterial 
blood flow (Fem Q) in Group I ; blood («) , Group I I ; hypertonic 
sahne/dextran ( • ) , Group I I I ; haemaccel (o) and Group I V ; 0.9% saline 
(A). Data recorded immediately before resuscitation (Pre-R) and 
thereafter immediately (End-R) and at 5, 10, 15, 20, 25 and 30 minutes 
after resuscitation. Values are means±S.E.M. 

Immediately after resuscitation there were significant falls in Pa02: in Group I Pa02 fell 

by 23.2±2.5 mmHg from a pre-resuscitation value o f I02.0±5.4 mmHg (Figure 4b.5). 

There were no differences in the fall in Pa02 between groups immediately after 

resuscitation. Thereafter PaOi was maintained without any further significant change in 

groups I , I I I and I V for the remainder of the study. However, Pa02 rose significantly by 

16.8±3.0 mmHg over the subsequent 30 min in the group resuscitated with hypertonic 

saline/dextran f rom 86.0±4.2 mmHg immediately fol lowing resuscitation. PaC02 did 

not change significantly following resuscitation (Figure 4b. 5) except in the group given 

hypertonic saline/dextran where it fell significantly by 8.1±1.7 mmHg 30 min after 

resuscitation, from 35.3±2.1 mmHg immediately after resuscitation. After resuscitation 

there was a significant rise in arterial pH in groups 1, I I I and IV . Arterial base excess 

(ABE) also increased significantly following resuscitation in Groups I , in and IV : in 
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Group I this increase amounted to 2.6±0.9 m M from a pre-resuscitation value o f -

8.0±1.1 mM, and continued to rise over the next 30 minutes. There was no difference in 

the rise o f ABE between groups I , I I I and I V immediately following resuscitation and 

throughout the remainder o f the study. Arterial pH did not change during resuscitation 

in Group I I , however, base excess in Group n (HSD) fell significantly f rom a pre-

resuscitation value o f - 9 . 2 ± 0 . 4 m M to -10 .3±1.0 m M immediately post resuscitation. 

Arterial pH did fall in Group I I in the post resuscitation phase and both arterial pH and 

ABE continued to fall significantly during the 30 minutes post-resuscitation in these 

animals treated with hypertonic saline/dextran (Figure 4b.5). Arterial pH and base 

excess were significantly lower 15 and 30 minutes after resuscitation with hypertonic 

saline/dextran compared with the other groups, reaching levels o f 7.15±0.02 (pH) and -

19.0±1.4 m M (ABE) by 30 minutes post resuscitation with this fluid. 

In Group I I haematocrit fell significantly immediately following resuscitation by 

11.6±1,2 Vo f rom a pre-resuscitafion level o f 32.4±0.4 %. There was no significant 

difference between any groups given asanguinous fluids (Figure 4b.6). However, 

haematocrit did not change fol lowing resuscitation in the animals treated with 

autologous blood (Group I ; Figure 4b.6). Haematocrit was subsequently maintained at 

post-resuscitation levels in the groups treated with blood, haemaccel and 0.9% saline. 

By contrast haematocrit increased significantly in the group treated with hypertonic 

saline/dextran to 33.8±3.1 % by 30 minutes after resuscitation. Haematocrit was 

significantly higher at this point in animals treated with hypertonic saline/dextran than 

in those given haemaccel or 0.9% saline but not significanfly different from those 

resuscitated with blood (Figure 4b.6). Indeed, 30 minutes after resuscitation with 

hypertonic saline/dextran haematocrit was higher than that seen immediately before 

resuscitation (Figure 4b.6). 

Post mortem Lung Weight Indices were not significantly different between groups 

(Figure 4b. 13). 
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Figure 4b.13 Lung weight index (LWI) , calculated as post mortem lung weight/body 
weight, following thoracic blast injury, subsequent haemorrhage o f 40% 
total blood volume and resuscitation with autologous whole blood (I), 
hypertonic saline/dextran (I I ) , colloid ( I I I ) and 0.9% saline ( IV) in 
anaesthetised rats. Values are means+S.E.M. 

4b.4 Discussion 

Thoracic blast injury induced the expected bradycardia, transient apnoea and 

hypotension, which was rapidly but partially resolved. The response to subsequent 

controlled haemorrhage consisted o f a progressive bradycardia and hypotension in 

Groups I , I I I and I V as has been reported previously (Chapters 3 & 4a). However, this 

was not apparent in Group I I where blood pressure was maintained during the first 23% 

of blood loss (Figure 4b. 7). It is not immediately obvious why the pattern of response to 

haemorrhage is different in Group I I compared to the other three groups. One possible 

reason could be that the magnitude of the blast injury was less in Group I I than in the 

other three groups. However, the physiological response to blast itself, duration of 

apnoea, was not different between any o f the groups (Figure 4b. 3), 

The new findings f rom the study relate to the effects of subsequent delayed resuscitation 

and a comparison o f the efficacy o f four resuscitation fluids: whole (autologous) blood, 

hypertonic saline/dextran, isotonic colloid (modified gelatin, Haemaccel) and 0.9% 

saline. The outcome of delayed resuscitation with these four fluids was not significantly 

different to that seen with early resuscitation: resuscitation with the asanguinous fluids 

restored arterial blood pressure and femoral blood flow to pre-haemorrhage levels 

whilst blood restored these parameters to higher (pre-blast) levels. The effects o f blood, 

colloid and 0.9%) saline were sustained for the fol lowing 30 minutes until the end o f the 

study and resulted in a significant improvement (increase) in arterial pH and base 
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excess. By contrast the effects of hypertonic saline/dextran were very short-lived with 

arterial blood pressure and femoral f low falling within f ive minutes o f resuscitation. By 

comparing data recorded 15 minutes after resuscitation with hypertonic saline/dextran in 

the 'early' resuscitation series in Chapter 4a (Figures 4a. 11 and 4a. 12; approximately 20 

minutes after blood loss) with that recorded 20 minutes after haemorrhage (Figures 4b 9 

and 4b. 10; immediately before resuscitation) in the present series, it can be seen that the 

blood pressure and flow were lower in animals resuscitated with hypertonic 

saline/dextran compared to no resuscitation at approximately equal times after blood 

loss. Thus, within this timescale, resuscitation with hypertonic saline/dextran appears to 

be deleterious compared to no resuscitation. This is in agreement with a study where 

sui'vival rates were significantly higher in those left unresuscitated when compared to 

those resuscitated with hypertonic saline (Solomanov et al. 2000). Perhaps then it is the 

hypertonic component of the HSD that is producing the deleterious effects following 

thoracic blast injury and haemorrhage in this study. Accompanying the fall in blood 

pressure and flow was a marked fall in arterial pH and base excess after resuscitation 

with hypertonic saline/dextran, indicating a developing metabolic acidosis. This effect 

was not apparent in the other groups which is in contrast to a study in 1999 by Baron 

and co-workers in which delayed resuscitation o f a pressure controlled haemorrhage in 

pigs, with blood and normal saline resuhed in an increase in serum lactate levels and an 

increase in base deficit. However, that study did not evaluate the effect o f delayed 

resuscitation with HSD. As with early resuscitation, hypertonic saline/dextran did not 

attenuate any lung oedema since there were no differences in Lung Weight Indices 

between groups (Figure 4b. 13). 

The results o f Chapter 4 indicate that early and late resuscitation were equally effective 

as judged by gross haemodynamic and acid-base status after thoracic blast injury and 

blood loss. This is in contrast to many studies reported in the literature where 

resuscitation too early after an uncontrolled haemorrhage in an animal model resulted in 

an increased mortality (Bickell et al. 1992; Krausz et al. 1992; Marshall et al. 1997; 

Stern et al. 2000). This effect was apparent regardless of the type o f fluid used, e.g., 

early resuscitation of haemorrhage with HSD or Ringers Lactate solution (RL) showed a 

significant increase in mortality (Bickell et al. 1992). Hypertonic saline resuscitation 

within 15 minutes o f bleeding led to an increased blood loss and early death (Krausz et 

al. 1992). In a study of uncontrolled haemorrhage in rats, early resuscitation with RL 

led to the deaths o f all animals in this group (Marshall et al. 1997). Finally, Stern and 
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colleagues (2000) showed that following an uncontrolled haemorrhage early increases 

in blood pressure and flow resulting from bolus infusions of HSD, resulted in a greater 

haemorrhage volume and mortality compared to slow infusion o f HSD which allowed 

comparable increases in blood pressure and flow late in resuscitation. As mentioned 

earher, some studies reported higher survival rates in subjects left unresuscitated. This 

was reported in both rats (Solomonov et al. 2000) and humans (Bickell et al. 1994) 

suggesting that resuscitafion should be minimised or even withheld until control of 

bleeding is gained. However, Burris et al. showed in 1999 that controlled resuscitation 

with hypertonic hydroxyethyl starch or RL, to maintain a hypotensive state following an 

uncontrolled haemorrhage, increases survival when compared to no fluid resuscitation. 

This suggests that the deleterious nature of fluid resuscitafion is due to the re-

establishment o f 'normal' blood pressure which may lead to an increase in blood loss. 

However, it must be stressed that the haemorrhage model used in this study is not 

uncontrolled but volume controlled. 

As the deleterious outcome of resuscitation of thoracic blast injury and blood loss with 

HSD does not seem to be due to the fiming o f the resuscitafion, as both early (section 

4a) and late (section 4b) resuscitation periods were equally effective after thoracic blast 

injury and haemorrhage, the next chapter wi l l aim to determine i f hypertonicity plays a 

part in this response. Studies comparing isotonic fluids with hypertonic fluid 

resuscitation have yielded conflicting results. Kreimeier and co-workers (1997) 

concluded that survival rates were higher when severely injured patients were 

resuscitated with hypertonic saline when compared to isotonic saline. However, a meta

analysis o f controlled clinical studies concluded no additional benefit with hypertonic 

saline resuscitation over isotonic solutions, but did however conclude that resuscitation 

of traumatic hypotension with HSD is likely to be more effective (Wade et al. 1997). 

In conclusion Chapter 4 has shown that resuscitafion o f animals fol lowing primary 

thoracic blast injury and severe haemorrhage after an early (5 minute), and delayed (20 

minute) resuscitation period with whole blood, isotonic saline or colloids (Haemaccel, 

early and delayed resuscitation; hydroxyethyl starch, early resuscitation), w i l l result in a 

restoration o f arterial blood pressure, femoral arterial blood flow and acid base status 

which w i l l be sustained for at least 30 minutes. The use o f hypertonic saline/dextran is 

contraindicated following primary thoracic blast and haemorrhage since the effect is not 

sustained, and indeed there is some evidence that within 15 minutes of resuscitation 
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with hypertonic saline/dextran animals have a lower arterial blood pressure and femoral 

arterial blood flow compared to those left unresuscitated. 
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5 Further Studies on Resuscitation Following Blast Injury and 

Haemorrhage: Comparison of Hypertonic Saline/Hydroxyethyl 

Starch, Hypertonic Saline and Isotonic Hydroxyethyl Starch 

with Hypertonic Saline/Dextran 

5.1 Introduction 

The previous chapter (chapter 4) compared the effectiveness o f resuscitation with five 

different fluids, autologous blood, modified gelatin solution, 0.9% saline, hypertonic 

saline/dextran (HSD) and isotonic hydroxyethyl starch. These studies investigated the 

effect of resuscitation after blast and 40% haemorrhage following a short (5 minutes, 

section 4a), for all fluids, and long (20 minutes, secfion 4b) shock phase for all fluids 

except isotonic hydroxyethyl starch. 

The results demonstrated that all types o f asanguinous fluids evaluated were able to 

restore mean arterial pressure and femoral blood flow fol lowing their administration, 

whether this was 5 or 20 minutes after the haemorrhage. Autologous blood restored 

these parameters to values higher than the pre-blast level. The cardiovascular 

improvements with colloid, crystalloid and autologous blood were sustained following 

infusion and there were no apparent detrimental side effects (as has previously been 

reported with infusion o f crystalloid alone in animals receiving blast; W i k o f f et a/. 

1999). By comparison, HSD had a short-lived effect, causing an inifial improvement in 

mean arterial pressure, but within 5 minutes o f infusion in both studies (short and 

delayed resuscitation periods, chapters 4a and 4b respecfively) there was a significant 

reduction in both mean arterial blood pressure and femoral arterial blood flow. At the 

same time, there was rapid development of a metabohc acidosis. Indeed, by comparing 

data recorded 15 minutes after resuscitation with hypertonic saline/dextran in the 'early' 

resuscitation series in chapter 4a (Figures 4a. 11 and 4a. 12; approximately 20 minutes 

after blood loss) with that recorded 20 minutes after haemorrhage (Figures 4b.9 and 

4b. 10; immediately before resuscitation) in chapter 4b, it can be seen that mean arterial 

blood pressure and femoral arterial blood flow were lower in animals resuscitated with 

hypertonic saline/dextran compared to no resuscitation at approximately equal times 

after blood loss. Thus, within this timescale, resuscitation with hypertonic saline/dextran 
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appears to be deleterious compared to no resuscitation. Post mortem examination 

showed no qualitative difference in gross lung pathology, as determined by the lung 

weight/body weight ratio, between any o f the treatment groups indicating that non o f the 

fluids tested either attenuated or augmented any pulmonary oedema that may be present 

as a resuh o f the blast injury (Guy et al. 1998). 

It is generally accepted that resuscitation with hypertonic saline confers greater benefits 

than resuscitation wi th isotonic crystalloids and some studies suggest that the addition 

of dextran confers additional benefit. This benefit seems to include a reduced 

ischaemia/reperfusion induced inflammatory response (Ciesla et al. 2001; Rizoli et al. 

1998) and a reduction in tissue oedema. However, these conclusions are not universally 

accepted and the controversy may reflect different types of insuh in various studies as 

w i l l be discussed below. 

The use of hypertonic saline (HS) for resuscitation after haemorrhagic shock is reported 

to improve tissue perfijsion especially to the splenic and hepatic vascular bed when 

compared to Lactate Ringers solution (Kien et al 1991) and limits the inflammatory 

response (Ciesla et al 2001; Rizoh et al. 1998) by decreasing CD 18 expression thereby 

limiting neutrophil adhesion (Rhee et al 2000. See chapter 4a, secfion 4a.4.4 and Table 

4a.3). Hypertonic saline resuscitation w i l l also return neutrophil activation back to 

baseline following an increase due to resuscitation with Lactate Ringers (LR) solution 

(Rhee et ai 1998). Ischaemia/reperfusion-induced mRNA expression of the intercellular 

adhesion molecule ICAM-1 was suppressed in the hepatic circulation following 

resuscitation with hypertonic saline, leading to a decrease in leukocyte adhesion to the 

endothelial cells (Oreopoulos et al. 2000; Mazzoni, 1990; Sheilds et al 2000). This is 

also reported to occur in the pulmonary circulation (Rizoli et al. 1998). HS resuscitafion 

was shown to decrease pulmonary oedema following acid aspiration-induced lung 

injury (Rabinovici et al. 1996) and following a systemic inflammatory response to acute 

pancreatitis (Sheilds et al 2000). However, this is not reported to be the case after 

pulmonary contusion (Cohn et al 1997). Several studies looking at survival rates, 

comparing resuscitation fluids administered after haemorrhagic shock and in severely 

injured patients (Vassar et al 1993) concluded that an increase in survival with 

hypertonic saline resuscitation was apparent when compared to isotonic saline 

(Kreimeier et al. 1997; Solomonov et al. 2000). However, a meta-analysis of controlled 

clinical studies concluded that HS was not more effective than standard isotonic 
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solutions for treating traumatic hypotension and that HSD was likely to be more 

effective (Wade et ai 1997b). This was not the case fol lowing severe injuries where the 

addition o f dextran was reported to be o f no benefit (Vassar et al. 1993). Waagstein and 

colleagues showed in 1997 that HS reversed ischaemia-induced haemodynamic and 

tissue metabolic disturbances with or without the addition o f dextran. However, 

O'Benar reported in 1998 that HSD did not correct severe haemorrhage-induced 

metabolic disturbance, as A B E remained low. 

Bigger molecules such as dextran or starch are added to HS to increase the oncotic 

pressure and prolong its volume expansion properties as fluid w i l l still leak out o f the 

vessel as sodium moves down its concentration gradient, taking fluid with it by osmosis. 

The addition o f dextran in particular is reportedly beneficial due to, for example, its free 

radical scavenging properties amongst other reported benefits (see chapter 4a, secfion 

4a.4.4). Consistent with this argument others have reported a significant attenuafion of 

leukocyte adhesion in the hepatic microcirculation with HSD after haemorrhagic shock 

when compared to hypertonic hydroxyethyl starch (HHES; Bauer et al 1993), but 

Vollmar and colleagues (1994) found HHES resuscitation restored the hepatic 

microcirculation and prevented the reperfiasion-induced leukocyte stasis and adherence 

following haemorrhagic shock. In addition, a positive inotropic effect o f HHES was 

shown in heahhy volunteers, though it is thought this is unlikely to be clinically relevant 

(Goetzetal 1995). 

The picture becomes more complicated with studies o f resuscitation following 

uncontrolled haemorrhage from a discreet lesion such as a large artery. Riddez reported 

in 1998 that 5 out of 8 pigs did not survive after HSD resuscitation of an uncontrolled 

haemorrhage, even i f only two thirds o f the recommended dose (2.65mL.kg"' compared 

to the recommended 4mL.kg' ' ) was administered (Riddez et al. 1998). However, this 

may reflect problems with rapid elevation of blood pressure causing further 

haemorrhage rather than a particular problem wi th hypertonic solutions. 

The resuhs from Chapter 4, have indicated a significant potential problem with using 

HSD in the resuscitation o f the blast casualty. It is unclear whether this represents a 

generalised problem with hypertonic solutions when used after primary thoracic blast 

injury and blood loss or whether it is the dextran component o f the HSD fluid. 

Therefore the present study aims to compare the effects o f hypertonic saline alone (HS) 
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and together with hydroxy ethyl starch (HHES), and isotonic hydroxyethyl starch (HES), 

with hypertonic saline dextran (HSD) administered 5 minutes after the end of a 

haemorrhage fol lowing primary thoracic blast injury. 

5.2 Methods 

The experiments were conducted on male Wistar rats (Harlan Orlac, body weight 232-

283g), which were terminally anaesthetised and prepared for recording as described in 

Chapter 2. 

5.2.1 Experimental protocol 

Upon completion of the surgery the rats were positioned supine in the blast apparatus 

with the ventral thorax 3.5 cm below the blast nozzle (which delivers the blast wave to 

the animal). The animals were then allowed to stabilise for 1 h under 

alphadolone/alphaxolone (Saffan^*^', Pitman-Moore, U K ) anaesthesia prior to exposure 

to blast. 

The infusion rate o f anaesthetic was adjusted within the range 19-22 mg.kg'Vh"' to 

maintain an experimental level o f anaesthesia (mild withdrawal and a pressor response 

of approximately 10 mmHg to a noxious pinch of the foot). 

A l l animals were then treated in an identical manner to that reported in Chapter 4 (see 

section 4b.2.1) with regards to the administration o f the blast injury and 40% 

haemorrhage. 

Following baseline cardiovascular, respiratory and blood gas measurements the protocol 

shown diagrammatically in Figure 5.1 was then followed. The animals were allocated 

randomly to groups (see Table 5.1) and resuscitated with one of the following fluids 

given intravenously via the tail at the standard clinical rate o f 1. lmL.kg ' ' .min ' ' (ATLS 

guidelines) 5 minutes after the end of haemorrhage: 

• hypertonic saline/hydroxyethyl starch (7.5% saline/7% hydroxyethyl starch, 

HyperHes, Monoflac, Germany; 4 mL.kg' ' ) 
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• hypertonic saline (7.5% saline; 4 mL.kg"') 

o isotonic hydroxyethyl starch solution (HAES-Steril, Fresenius, UK; 1:1 

resuscitation volume: blood loss) 

In addition, data f rom animals treated with hypertonic saline/dextran (RescueFlow®; 

7.5% sahne/6%) dextran 70, 4 mL.kg"') are presented in this chapter. Animals were not 

randomised into this group in the present study. The data are derived from a study 

reported previously in Chapter 4a and are included here to facilitate comparison. 

Table 5.1 Summary of treatments: all groups subjected to thoracic blast followed 
10 minutes later by a progressive haemorrhage o f 40% total estimated 
blood volume at 2% BV.min"'. 

Resuscitation fluid Group 

(Resuscitated 5 minutes 
after haemorrhage) 

Hypertonic 
saline/hydroxyethyl starch 
(7.5% saline/7% hydroxyethyl 
starch; 4 mL.kg' ' ) 

I 

Hypertonic saiine/dextran 
(7.5% saline/6% dextran 70, 4 
mL.kg-') 

I I 

Hypertonic saline (7.5% 
saline; 4 mL.kg"') 

I I I 

Isotonic hydroxyethyl starch 
solution (1:1 resuscitation 
volume: blood loss) 

I V 

Cardiovascular measurements were made from 1 minute before blast continuously until 

5 minutes after blast, immediately before haemorrhage, after the removal o f each aliquot 

of blood during haemorrhage, immediately before resuscitation and thereafter 

immediately, 5, 10, 15, 20, 25 and 30 minutes after resuscitation. Blood gas analyses 

were performed on samples taken immediately before blast, the first and last samples 

taken during haemorrhage, immediately before and after resuscitation and at 15 and 30 

minutes after resuscitation. Duration of apnoea was determined visually and timed using 

a stopwatch. 
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All animals were killed 30 minutes after the end of resuscitation with an overdose of 

0 5mL of 60mg.mL"' (106-129mg.kg'') sodium pentobarbitone (Sagatal, Rhone 

Merieux (Ireland) Tallaght, Dublin) administered intravenously. The lungs were 

removed and weighed to determine Lung Weight Index (lung weight^ody weight). 

Protocol 

Thoracic blast Resuscitation 

Haemorrhage 40% BV at 2% BV min continued recording for 30 
min post resuscitation 

Time (min) 0 10 

Blood Loss (%) 0 0 

30 35 

40 

Group Haemorrhage Blast 

I 

11 

m 
IV 

Figure 5,1 

Resuscitation Fluid 

+ 

+ 
+ 

+ 

+ 

+ 

+ 

7.5% saline / 7% hydroxyethyl starch n=6 

7.5% saline / 6% dextran n=5 

7.5% saline n=6 

isotonic hydroxyethyl starch n=6 

Diagrammatic representation of the protocol followed in this study (see 
section 5b.2.1 for full explanation). Plus sign (+) indicates presence of 
haemorrhage and blast injury in that group. 

5.3 Results 

5 .3 1 Baseline values 

Baseline (pre-biast) values for each group are presented in Table 5,2 There were no 

significant differences between groups in the baseline cardiovascular or arterial blood 

gas variables, body weights or body temperature. Body temperature did not change 

significantiy during the course of the study in any group. 
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Group I Group n Group n i Group IV 
n 6 5 6 6 
Body wt (g) 253.5±1.8 254.0±8.5 251.7±3.2 252.5±2.3 
HP (ms) 153.8±2.1 153.2±2.9 142.3±5.6 148.2±5.9 
MBP (mmHg) 97.5±3.4 104.0±2.2 102.4±2.3 96.9±6.2 
Fem Q (mL.min"') 0.93±0.12 0.48±0.16 0.70±0.07 0.67±0.10 
FVR 115.0±15.5 197.5±37.9 158.2±23.7 155.02±22.7 
(mmHg.min.mL"') 
Pa02 (mmHg) 79.5±3.0 83.4±2.8 86.2±4.0 87.8±5.1 
PaC02 (mmHg) 36.5±1.4 32.2±1.2 34.7±1.1 32.7±0.9 
apH 7.37±0.01 7.37±0.01 7.37±0.01 7.37±0.01 
ABE (mM) -3.5±0.4 -5.4±0.7 -4.5±0.4 -5.2±0.5 
Hcrit (%) 34.6±1.6 33.4±1.2 35.6±0.6 33.0±0.7 
Temp (oC) 37.7±0.2 37.7±0.2 37.8±0.1 37.2±0.1 

Table 5.2 Baseline (pre-blast) values recorded in four groups of anaesthetised rats. 
Number of rats («); body weight (body wt); heart period (HP); mean 
arterial blood pressure (MBP); femoral arterial blood flow (Fem Q); 
femoral vascular resistance (FVR); arterial oxygen tension (Pa02); 
arterial carbon dioxide tension (PaC02); arterial pH (a pH); actual base 
excess (ABE); haematocrit (Hcrit); and body temperature (Temp). Values 
are mean ± SEM. 

5.3.2 Effects of thoracic blast 

Thoracic blast (Group I) produced a significant increase of 372.0±95.2 ms in heart 

period from a pre-blast control of 153.8±2.1 ms and a significant fall in mean blood 

pressure of 61.2±1.6 mmHg from a pre-blast level of 97.5±3.4 mmHg (Figure 5.2). 

Thereafter there was a rapid recovery in heart period and a partial recovery in mean 

arterial blood pressure (MBP). 
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Figure 5.2 Effects of a 
thoracic blast injury on heart 
period (HP) and mean arterial 
blood pressure (MBP) in 4 
groups of anaesthetised rats. 
Group I ; («), Group H; (H), 
Group I I I ; (o) and Group IV; 
(A). Data recorded 
immediately before blast (C), 
and thereafter immediately 
after blast (0), and at 5 and 
10 minutes after blast. Values 
are means+S.E.M. 

In addition, in Group I , thoracic blast produced a significant (Student's independent / 

test) apnoea lasting 22.8±0.6 seconds (Figure 5.3). 

30 

u 
Oi 

(0 
0) o c a. < 

20 

10 

n 
.* •.sv 

.SWSSSSSNS 

.wwwww 
.̂ \̂̂ \̂ ^̂ \̂  
.\SN,\S\S\>.N 

III IV 

Figure 5.3 Duration of apnoea following thoracic blast injury in 4 groups of 
anaesthetised rats. Values are means±S.E.M. 

Furthermore, blast (Group I) produced a transient fall in femoral arterial blood flow of 

0.84±0.06 mL.min"' from a pre-blast control of 0.93±0.12 mL.min"' (Figure 5.4), and a 

transient fall in femoral arterial vascular resistance of 87.0±15.5 mmHg.min.mU' from 

a pre-blast level of 115.0 mmHg.min.mL"' (Figure 5.4). Ten minutes after blast heart 

period was still elevated and MBP was still significantly below pre-blast levels. 
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Figure 5.4 Effects of a 
thoracic blast injury on 
femoral arterial vascular 
resistance (FVR) and 
femoral arterial blood flow 
(Fem Q) in 4 groups of 
anaesthetised rats. Group I , 
(•) , Group I I ; (•), Group 
I I I ; (o) and Group IV; (A). 
Data recorded immediately 
before blast (C), and 
thereafter immediately 
after blast (0), and at 5 and 
10 minutes after blast. 
Values are means±S.E.M. 

Time (min) 

Following blast there was a significant fall in Pa02 of 19.3±5.6 mmHg (Group I) from a 

control pre-blast value of 79.5±3 .0 mmHg and arterial pH of 0.06±0.01 from a pre-blast 

control of 7.37±0.01 (Figures 5.5). 
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Figure 5.5 Effects blast, haemorrhage and subsequent resuscitation in anaesthetised 
rats on arterial oxygen tension (Pa02), arterial carbon dioxide tension 
(PaC02), arterial pH and arterial base excess (ABE). Group I ; hypertonic 
saline/hydroxyethyl starch (•) , Group 0; hypertonic saline/dextran (•) , 
Group I I I ; hypertonic saline (o) and Group IV; isotonic hydroxyethyl 
starch (A). Data recorded immediately before blast (Pre-B), at the start of 
a haemorrhage of 40% total blood volume (Start H), at the end of 
haemorrhage (End H), at the end of fluid resuscitation (End R) and 
thereafter at 15 and 30 minutes after resuscitation. Values are 
means±S.E.M. 
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Following thoracic blast there was a significant rise in PaC02 of 6.2±1.4 mmHg (Group 

I) from a pre-blast control level of 36.5±1.4 mmHg (Figure 5.5) and haematocrit 

increased significantly following blast from a pre-blast level of 34.6±1.6 % to 38.6±0.6 

% (Figures 5.6). There was no change in ABE during this period (Figure 5.5). Thoracic 

blast in Groups II-IV produced effects on the above parameters similar to those seen in 

Group I ; there were no significant differences between groups for the first 10 minutes 

after blast. 
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Figure 5.6 Effects of blast, haemorrhage and subsequent resuscitation in 
anaesthetised rats on haematocrit (Hct). Group 1; hypertonic 
saline/hydroxyethyl starch (•) , Group I I ; hypertonic saline/dextran (H), 
Group IE; hypertonic saline (o) and Group IV; isotonic hydroxyethyl 
starch (A). Data recorded immediately before blast (Pre-B), at the start of 
a haemorrhage of 40% total blood volume (Start H), at the end of 
haemorrhage (End H), at the end of fluid resuscitation (End R) and 
thereafter at 15 and 30 minutes after resuscitation. Values are 
means±S.E.M. 

5.3.3 Effects of progressive haemorrhage 

Haemorrhage of 40% blood volume, initiated 10 minutes after thoracic blast, induced a 

significant change in heart period (Figure 5.7) and mean blood pressure in all groups 

(Figure 5.7). There was no evidence of the first, tachycardic, phase of the response to 

blood loss normally associated with haemorrhage in the absence of thoracic blast injury. 

The following section will compare the peak change in heart period corresponding to 

the bradycardia from each individual animal. 
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Figure 5,7 Effects of a 
progressive haemorrhage of 
40% total blood volume 
following thoracic blast injury in 
4 groups of anaesthetised rats on 
heart period (HP) and mean 
arterial blood pressure (MBP). 
Group I ; (•) , Group 11; (•), 
Group lU; (o) and Group IV; 
(A). Values are means±S.E.M. 

0 5 10 15 20 25 30 35 40 

Volume Haemorrhage (%BV) 

Animals in Group 1 showed no significant tachycardia, while the bradycardia 

(significant peak increase in heart period of 8.62±2.75 ms; Student's paired / test) was 

seen after the loss of 27.2±4.6 % blood volume (Figure 5.7). Furthermore, mean arterial 

blood pressure was not maintained in Group I during the haemorrhage and began to fall 

after the removal of the first aliquot of blood, the hypotension becoming significant 

after the loss of 13.3%BV and reached a nadir of 22.56±1.44 mmHg after the loss of 

39.44±0.56 %BV (Figure 5.7). There was no significant difference in the peak increase 

in heart period, or in the hypotension induced by progressive haemorrhage between 

groups. Associated with the fall in arterial blood pressure there were reductions in 

femoral arterial flow in all groups (Figure 5.8). However, there was no evidence of a 

change in femoral vascular resistance during the blood loss (Figure 5.8). 
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Figure 5.8 Effects of a 
progressive haemorrhage of 
40% total blood volume 
following thoracic blast injury 
in 4 groups of anaesthetised 
rats on femoral arterial 
vascular resistance (FVR) and 
femoral arterial blood flow 
(Fem Q). Group I ; (•), Group 
I I ; ( •) , Group IH; (o) and 
Group IV; (A). Values are 
means+S.E.M. 
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By the end of the haemorrhage Pa02 (Group I) had increased significantly by 26.8±5 .6 

mmHg from a pre-haemorrhage value of 60.2±3 .1 mmHg (Figure 5.5) while PaC02 

decreased significantly by 5.0±2.0 (Figure 5.5). There was a fall in arterial pH and base 

excess of 0.05±0.01 (pH) and 4.8±0.8 mM from a pre-haemorrhage level of 7.31±0.01 

and -4.5±0.2 mM respectively (Figure 5.5). Haematocrit also fell by 5.4±0.2 % from a 

pre-haemorrhage control of 38.6±0.6 % (Figure 5.6) in Group I . There was no 

significant difference in blood gas parameters between groups during the haemorrhage 

period. 

5.3.4 Effects of resuscitation 

Five minutes after the end of haemorrhage animals in Groups I-IV were resuscitated 

with hypertonic saline/hydroxyethyl starch (HHES, 4 mL.kg"'), hypertonic 

saline/dextran (HSD, 4 mL.kg"'), hypertonic saline (HS, 4 mL.kg"') or isotonic 

hydroxyethyl starch (HES, 1:1 resuscitation:haemorrhage volume) respectively. 

Resuscitation induced a similar, significant, elevation in arterial blood pressure to pre-

haemorrhage levels in all four groups (Figure 5.9). In Group I there was a ftirther 

increase in MBP of 17±5 mmHg over the following 10 minutes which was maintained 

for the remaining 30 minutes of the study. In Group IV MBP was maintained for the 

remaining 30 minutes of the study without ftirther increase (Figure 5.9). In Group n i 

MBP was maintained for 15 minutes after resuscitation, thereafter falling significantly 

(Figure 5.9). However, in Group I I the effects of hypertonic saline/'dextran were not 
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sustained: MBP began to fall within 5 minutes of resuscitation, and by 10 minutes after 

resuscitation had fallen significantly by 30±5 mmHg and remained at the low level for 

the remainder of the study (Figure 5 .9). One rat treated with hypertonic saline/dextran 

died 25 minutes after resuscitation, while all of the rats in the other groups survived 

until the end of the study (as reported in Chapter 4a.3.4). 
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Figure 5.9 Effects of resuscitation with various fluids following thoracic blast injury 
and subsequent haemorrhage of 40% total blood volume in anaesthetised 
rats, on heart period (HP) and mean arterial blood pressure (MBP) in 
Group I ; hypertonic hydroxyethyl starch (•) , Group I I ; hypertonic 
saline/dextran (H), Group I I I ; hypertonic saline (o) and Group IV; 
isotonic hydroxyethyl starch (A). Data recorded immediately before 
resuscitation (Pre-R), and thereafter immediately after resuscitation (End-
R) and at 5, 10, 15, 20, 25 and 30 minutes after resuscitation. Values are 
means±S.E.M. 

Associated with the rise in arterial blood pressure immediately after resuscitation there 

was a fall in heart period (Figure 5.9) and femoral vascular resistance (Figure 5.10), and 

a significant increase in femoral blood flow (Figure 5.10). This effect was sustained for 

the remainder of the study only in the animals resuscitated with isotonic hydroxyethyl 

starch solutions. In the remaining three groups femoral blood flow fell and vascular 

resistance increased as the study progressed, this waning of the effects of resuscitation 

being most pronounced in Group I I (Figure 5.10). 
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Figure 5.10 Effects of resuscitation with various fluids following thoracic blast injury 
and subsequent haemorrhage of 40% total blood volume in anaesthetised 
rats, on femoral vascular resistance (FVR) and femoral arterial blood 
flow (Fem Q) in Group I ; hypertonic saline/hydroxyethyl starch (•) , 
Group 11; hypertonic saline/dextran (•) , Group I I I ; hypertonic saline (o) 
and Group IV; isotonic hydroxy ethyl starch (A). Data recorded 
immediately before resuscitation (Pre-R), and thereafter immediately 
after resuscitation (End-R) and at 5, 10, 15, 20, 25 and 30 minutes after 
resuscitation. Values are means±S.E.M. 

Pa02 fell immediately after resuscitation in groups I , I I and IV (Figure 5.5). Thereafter 

there was an elevation in Pa02 in the group treated with hypertonic saline/dextran. 

PaC02 did not change significantly following resuscitation (Figure 5.5) except in the 

group given hypertonic saline/dextran where it had fallen significantly by 30 minutes 

after resuscitation. Immediately after resuscitation there was a rise in arterial pH and 

base excess in Group IV which continued for the remainder of the study. In Groups I 

and I I I both arterial pH and base excess increased within 15 minutes of resuscitation, 

and continued to do so for the remainder of the study. In contrast, animals treated with 

hypertonic saline/dextran (Group 11) showed a significant continued fall in arterial pH 

and base excess during the 30 minutes post-resuscitation (Figure 5.5). At 15 and 30 

minutes after resuscitation there were clear, significant, differences in arterial pH and 

base excess between groups, these parameters being highest in the animals given 

isotonic hydroxyethyl starch solution, intermediate (and equal) in those given 

hypertonic saline and hypertonic saline/hydroxyethyl starch and lowest in those given 
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hypertonic saline/dextran (Figure 5.5). 

Haematocrit fell significantly following resuscitation in all groups (Figure 5.6), this 

effect being greatest in Group IV Haematocrit was subsequently maintained at post-

resuscitation levels in the groups treated with hypertonic saline/hydroxyethyl starch, 

hypertonic saline and isotonic hydroxyethyl starch. By contrast haematocrit increased 

significantly in the group treated with hypertonic saline/dextran (Figure 5.6). Indeed, 30 

minutes after resuscitation with hypertonic saline/dextran haematocrit was not 

significantly different to that seen immediately before resuscitation (Figure 5.6). Post 

mortem Lung Weight Indices were not significantly different between groups (Figure 

5.11). 
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Figure 5.11 Lung weight index (LWI) calculated as post mortem lung weight/body 
weight, following thoracic blast injury and haemorrhage of 40%) total 
blood volume and subsequent resuscitation in anaesthetised rats. Group I ; 
hypertonic saline/hydroxyethyl starch, Group I I ; hypertonic 
saline/dextran, Group I I I ; hypertonic saline and Group IV; isotonic 
hydroxyethyl starch. Values are means±S.E.M. 

5.4 Discussion 

We have previously shown that administration of whole blood or asanguinous isotonic 

solutions of either colloid (Haemaccel and isotonic hydroxyethyl starch) or crystalloid 

(0.9% saline) produce a sustained resuscitation after thoracic blast and haemorrhage 

(Chapter 4a). By contrast, it was shown in the same study that hypertonic saline/dextran 

was ineffective: although it initially restored arterial blood pressure the effects began to 
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wane within five minutes of the end of resuscitation and was associated with a 

development of a marked metabolic acidosis. The results were the same whether 

resuscitation was carried out 5 minutes or 20 minutes after the end of the haemorrhage 

(Chapters 4a & 4b respectively). The new finding from the present study suggests that 

this problem is specific for hypertonic saline/dextran rather than being a general 

problem with hypertonic saline solutions. 

In the present study a comparison was made of the efficacy of several resuscitation 

fluids: hypertonic saline/hydroxyethyl starch, hypertonic saline alone and isotonic 

hydroxyethyl starch. In addifion, data from animals treated with hypertonic 

saline/dextran are presented in this chapter. Animals from this group were not 

randomised into the present study. The data was derived from a study reported 

previously in Chapter 4a and was included here to facilitate comparison. Immediately 

upon completion of resuscitation the asanguinous fluids were all able to restore arterial 

blood pressure and femoral blood flow to pre-haemorrhage levels. The effects of 

isotonic hydroxyethyl starch were sustained for the following 30 minutes until the end 

of the study and resulted in a significant improvement (increase) in arterial pH and base 

excess. 

Hypertonic saline/hydroxyethyl starch produced a further increase in mean arterial 

blood pressure over the 10 minutes subsequent to resuscitafion. Interestingly, this was 

not associated with a ftirther fall in haematocrit, suggesfing that this latter effect was not 

due to ftirther mobilisation of extravascular water and consequent increase in venous 

return. There was some evidence of a waning of the effects of hypertonic 

saline/hydroxyethyl starch and hypertonic saline since there was a late increase in 

femoral vascular resistance and a fall in flow. In addition the improvement of acid base 

status was not as marked with these solutions as it was with isotonic hydroxyethyl 

starch. It is now important to determine the extent of the reduced blood flow by 

comparing flow in a number of tissues e.g. heart, liver, kidney at selected times after 

resuscitation using fluorescent microspheres (Schimmel et al. 2001). In addition, 

potenfial ischaemic tissue damage should be assessed and a comparison made between 

selected resuscitafion fluids. This could be achieved by assessing the expression of 

adhesion molecules, ICAM-1 and VCAM-1, which have previously been shown to be 

up-regulated after haemorrhagic shock, and to be affected by resuscitation fluids (Sun et 

al. 1999). Further assessment of liver damage could be effected by determining plasma 
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levels of a-glutathione-S-transferase, which is a sensitive and specific marker of 

hepatocellular injury (Redl et al. 1995; Rensing et al. 1999). In the context of blast 

injury the liver is of particular interest because of its role in defending the victim from 

the effects of bacteria and toxins which may gain access to the circulation as a 

consequence of either the primary blast injury (Guy et al. 1998) or secondary injury to 

the gut because of ischaemia and reperftision. In addition to this, an assay to detect 

microalbuminuria, arising from damage in the kidneys, could be utilised as a measure of 

general inflammation (Kreuzfelder et al. 1988; Smith et al 1994; Gosling et al. 1991). 

It is difficult to explain the deleterious effects of hypertonic saline/dextran. This is 

clearly not a generalised problem associated with hypertonic solutions, but rather 

appears to be associated with the dextran component since it is absent with the same 

tonicity of saline when used alone or in combination with hydroxyethyl starch. One 

possibility is that the hypertonic solutions do increase vascular permeability by 

shrinking vascular endothelial cells as has previously been suggested (Corso et al. 1998; 

Kreimeier et al. 1997). Normally this action is associated with an improvement in 

microvascular perftision (Corso et al 1998). However, this has not been assessed after 

blast, and it is possible that under this circumstance there is a sufficient increase in 

permeability to allow leakage of the relatively small (70kDa) dextran molecule into the 

interstitium, with a resultant loss of plasma water and hence an increased haematocrit. 

The use of microalbuminurea as a measure of capillary leak may aid in assessing this 

(Kreuzfelder et al 1988; Smith et al 1994; Goshng et al 1991) as dextran 70 and 

albumin are approximately the same size (70kDa vs 67kDa). However, it is possible that 

the strain of rat used in these studies is experiencing an anaphylactic reaction to the 

dextran molecule (see Chapter 4a, section 4a.4.4) and that it is this allergy that is 

leading to an increase in vascular permeability, although there is no evidence in the 

literature of a dextran allergy in this strain. Both these potential explanations require 

further investigation, in particular resuscitation with dextran alone should be looked at 

to assess any allergy to this molecule. I f this is the case then it may reveal an augmented 

anaphylactic response than that seen with dextran in conjunction with hypertonic saline 

as hypertonic saline is reported to reduce the inflammatory response (Ciesla et al 2001: 

Rizoli etal. 1998). 

In conclusion, the present study has shown that after primary thoracic blast injury and 

haemorrhage hypertonic saline alone and in combination with hydroxyethyl starch were 
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able to restore blood pressure to pre-haemorrhage levels. This effect was sustained for at 

least 30 minutes after resuscitation and was associated with an improvement in acid 

base status. However, resuscitation with isotonic hydroxyethyl starch produced greater 

improvement in acid base status. This is in contrast to the effects of hypertonic 

saline/dextran, which were not sustained and were associated with severe metabolic 

acidosis. Finally, there was some indication that the initial improvement in blood flow 

induced by hypertonic saline and hypertonic saline/hydroxyethyl starch waned during 

the 30 minutes after resuscitation and further studies are needed to assess whether this is 

likely to cause tissue damage, especially i f it is followed by further resuscitation. 
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The Effect of Doxapram on the Response to Primary Blast Injury: with 

Particular Reference to the Reflex Apnoea 

6.1 Introduction 

Primary blast injury to the thorax results in bradycardia, hypotension and apnoea (Krohn 

et al. 1942; Guy et al. 1998). Recent studies confirmed and extended these findings (see 

chapters 3-5). The bradycardia and apnoea have been shown to be reflex in nature, with 

afferent and/or efferent vagal pathways. The hypotension is also partially due to this 

reflex. The bradycardia is mediated via increased vagal efferent activity to the heart 

(Ohnishi et al. 2001), and although it has proven possible to pharmacologically block the 

bradycardia associated with thoracic blast injury with atropine (Ohnishi et al. 2001), 

currently there is no pharmacological treatment for the apnoea. It would be interesting, 

therefore to determine whether doxapram, a respiratory stimulant (Uehara et al. 2000; 

De Villiers et al. 1998; Bairam et al. 1993; Peers et al. 1991), could shorten the duration 

of apnoea i f administered immediately after blast. 

Doxapram is an analeptic (O'Connor et al. 1996), i.e., it stimulates respiration (Uehara 

et al. 2000; De Villiers et al. 1998; Bairam et al 1993; Peers et al. 1991), reducing the 

frequency and duration of apnoea of prematurity in humans (Yamazaki et al. 2001; Poets 

et al. 1999; Huon et al. 1998) and in newborn animals (Bairam et al. 1992). Doxapram is 

also reported to have some pressor actions (Huon et al. 1998; Cote el al. 1992; Bamford 

et al. 1986). The mechanism of action of doxapram on respiration is thought to be 

similar to that of hypoxia, i.e., it stimulates chemoreceptors (Decanniere et al. 1992; 

Leeman et al. 1992a; Peers et al. 1991; Bairam et al. 1993), stimulating the carotid 

bodies in a dose-dependent manner (Bairam et al. 1991, 1993). Decreasing levels of PO2 

appear to be detected by an oxygen sensor in the plasma membrane of chemoreceptor 

cells. This sensor seems to be a hemoprotein (see Gonzalez et al. 1995) which becomes 

desaturated leading to an inhibition of O2 sensitive potassium (K*) channels in type I cells 

of the carotid bodies. This then triggers the depolarisation and opening of voltage-

dependent calcium channels resulting in an influx of calcium into the type I cells and 

resulting in the release of catecholamine (see Gonzalez et al. 1995; Andersonbeck et al. 
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1995; Peers et ai 1991). However, the two latter studies on the mechanism of action of 

doxapram were carried out in vitro, and in 1993 Bairam and colleagues concluded that in 

newborn kittens doxapram acts in a manner independent of dopaminergic mechanisms on 

the carotid body. Doxapram is also reported to have actions on the central 

chemoreceptors ('Romeo et al 1995; Scott et al 1977; see Bamford et ai 1986) as it 

increases the ventilatory response to CO2 (Calverly et al. 1983). 

6.1.1 The chemoreceptor reflex 

The peripheral arterial chemoreceptors are located at the biflircation of the common 

carotid arteries in the neck (called the carotid bodies) and on the aortic arch in the thorax 

(called the aortic bodies; see Dampney et al 2002; Gonzalez et al. 1995). The afferent 

pathway is carried in the sinus nerve and the vagus nerve respectively (see Dampney et 

al 2002; Gonzalez et al. 1995). The peripheral chemoreceptors respond primarily to low 

arterial oxygen tension (Pa02; see Dampney et al. 2002 & Gonzalez et al. 1995), but 

also to increased hydrogen ion concentration (arterial pH) and thus increased arterial 

carbon dioxide tension (essentially via increased hydrogen ion concentrations; Gonzalez 

et al. 1995). In the absence of the activation of any other reflex, stimulation of the 

peripheral chemoreceptors results in an increase in ventilation, in order to correct the fall 

in PaOa, as well as varying effects on heart rate and peripheral vascular resistance. The 

cardiovascular effects of the reflex are variable because the respiratory part of the reflex 

is able to modify the cardiovascular part (Daly et al. 1988; Daly & Kirkman, 1988; see 

Figure 6.1). When the respiratory component of the reflex is absent, e.g., during a reflex 

apnoea, the primary cardiovascular effect of the peripheral chemoreceptor reflex 

becomes apparent. This involves a bradycardia due to an increase in vagal efferent 

activity to the heart, and vasoconstriction in most vascular beds particularly skeletal 

muscle, due to an increase in activity of sympathetic vasoconstrictor fibres (Daly et al. 

1988; Daly & Kirkman, 1988). When respiration can increase, the increased activity of 

inspiratory neurones in the medulla of the brainstem and the activation of the lung stretch 

afferent fibres by lung inflation (the Hering-Breuer reflex), will inhibit the cardiac vagal 

motorneurones leading to an increase in heart rate (see Figure 6.1), and also cause a 

peripheral vasodilation (Daly et al 1988; Daly & Kirkman, 1988). 

' Article in Italian, information gained from English abstract. 
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Figure 6.1 Schematic diagram of the neural pathway of the peripheral chemoreceptor 
reflex. Stimulation of the chemoreceptors results in an increase in 
respiration which leads to inhibition of the vagus nerve and hence a 
tachycardia (dashed line). However, when no increase in respiration is 
possible (e.g. during apnoea), the primary cardiovascular effect of the 
reflex (e.g. the bradycardia) becomes apparent (see section 6.1.1 for full 
explanation).® denotes excitatory transmission, 0 denotes inhibitory 
transmission. NTS, nucleus tractus solitarius; NA, nucleus ambiguus; 
CVM, cardiac vagal motorneurone; I , inspiratory neurone. 

6.1.2 Matching ventilation to perfusion of the lung 

In order for oxygen and carbon dioxide exchange to occur in the lungs ventilation must 

adequately match perfusion. However, ventilation and perfLision are not uniformly 

distributed in the lung even in heahhy individuals primarily due to the effects of gravity. 

This generally does not have a major effect on blood gases however, as there are 

mechanisms in place to compensate. For a given change in intrapleural pressure (i.e., 

when the thorax expands) there is a larger change in volume within the alveoli at the 

bottom of the lung as the alveoli here are smaller (due to weight of the lung tissue lying 

above), and thus more compliant, than at the apex of the lung. Thus the lung is better 

ventilated at the bottom of the lung compared to the top. However, not all of this 
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increased ventilation is wasted. Transmural pressure across the blood vessels increases 

towards the bottom of the lung, due to 'pooling' of blood because of the effects of 

gravity, causing the blood vessels to distend, and hence blood flow also increases toward 

the bottom of the lung. The opposite effect can be seen at the top of the lung. 

The following will describe the two extremes of ventilation/perfijsion mismatch. In reality 

the situation lies somewhere in between the two. 

6.1.2.1 Wasted ventilation 

Clinically, wasted ventilation may occur due to pulmonary embolism i.e., a blood clot 

blocking part of the pulmonary circulation. Ventilation to this part of the lung is wasted, 

as it cannot take part in gas exchange due to lack of blood flow to this area. The result is 

a low arterial oxygen tension and high arterial carbon dioxide tension (West, 1977). 

6.1.2.2 Wasted perfusion (shunt) 

When a proportion of blood flows through the pulmonary circulation without taking part 

in gas exchange this is termed right to lefl shunt or venous admixture. A small amount of 

venous admixture (approximately 1 to 2% of cardiac output) is normal. However, this 

proportion rises in certain pathological conditions and can result in hypoxaemia if 

compensatory mechanisms prove inadequate (West, 1977). 

The regulation of pulmonary blood flow can be passive or active. Passive regulation 

occurs because the blood vessels within the pulmonary circulation are distensible and so 

increases in blood flow lead to decreases in pulmonary vascular resistance without 

affecting overall pulmonary arterial pressure (Ppa). Active regulation occurs in response 

to alveolar oxygen tension. Under normal conditions the blood vessels surrounding the 

alveoli are exposed to high oxygen tensions. The oxygen diffuses through the alveolar 

walls into the vascular smooth muscle cells. When this oxygen tension falls, for example 

when the fraction of inspired oxygen (Fi02) is reduced or due to certain pathological 

diseases, the nearby arterioles constrict. The mechanism behind this hypoxia-induced 

arteriolar constriction is not fully understood (see below). This is in contrast to the 

effects of low oxygen tensions in the systemic circulation where low Pa02 will relax the 
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resistance vessels by causing the release of vasoactive substances from endothelial cells. 

These vasodilatory mediators subsequently act in an autocrine manner to cause the 

release of nitric oxide, which will directly relax the vascular smooth muscle cells 

(Burnstock & Ralevic, 1994). In the lungs the vasoconstrictor response to low alveolar 

oxygen tensions, termed the hypoxic pulmonary vasoconstrictor (HPV) response, 

decreases blood flow in the region of lung suffering low oxygen tension and diverts it to 

better ventilated areas, hence matching ventilation to perfusion. This occurs with no 

overall effect on pulmonary vascular resistance (PVR) provided that less than 20% of the 

lung is involved. In cases of acute alveolar hypoxia where the entire lung is affected PVR 

may be twice normal values and systemic arterial oxygen tensions can drop (Berne & 

Levy, 1993). It is not fully understood how low oxygen tensions lead to pulmonary 

vasoconstriction but it is likely that it is via a direct action on the vascular smooth muscle 

cells. This may result in the local release of vasoconstrictor mediators such as 

thromboxane A2, a-adrenergic catecholamines and endothelin possibly from the 

endothelium (Liu et at. 2001; Sato et al. 2000; Jones el al. 1999). Other studies have 

shown that in isolated pulmonary vascular smooth muscle cells acute hypoxia inhibits 

potassium channel activity and leads to depolarization of the smooth muscle cell (Post et 

al. 1995). A role for calcium channels within the pulmonary artery smooth muscle cells 

has also been implicated in the mechanism behind hypoxic pulmonary vasoconstriction. 

Hypoxia has been shown to enhance calcium channel currents in pulmonary resistance 

vessels (Franco-Obregon & Lopez-Barneo, 1996b). In experimental models of ARDS 

the HPV response is inhibited (Leeman et al. 1992b). Blood flow cannot then be diverted 

to better-ventilated areas of lung and systemic arterial oxygen tension falls. 

6.1.3 Doxapram and the HP V response 

In a normal lung administration of doxapram has been shown to increase the HPV 

response in anaesthetised animals (Leeman et al. 1992a; Decanniere et al 1992) by 

displacing the Fi02/Ppa stimulus response curve (Figure 6.2) to higher levels of Ppa for 

each given level of Fi02. This means that for a given Fi02 a higher pulmonary arterial 

pressure is achieved most likely via vasoconstriction of the pulmonary arterioles, and 

hence pulmonary gas exchange is improved (Leeman et al. 1992a). In contrast, Bjork 

and colleagues in 1996 concluded from their study that doxapram did not augment the 
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HPV response in normal piglets. However, they do suggest that interpretation of their 

data was difficult due to pronounced differences in metabolic and circulatory values 

between groups in the study. Therefore, under the influence of doxapram, pulmonary 

arterial pressure is likely to be higher at any Fi02, potentially due to an increase in 

pulmonary arteriolar vasoconstriction. 
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Figure 6.2 Schematic representation of a stimulus response curve showing the 
relationship between the fraction of oxygen inspired (Fi02) and pulmonary 
arterial pressure (Ppa). As the fraction of inspired oxygen decreases, 
pulmonary arterial pressure increases in a biphasic manner (approximate 
values taken from Decanniere et al. 1992). Doxapram displaces this curve 
so that at any given level of Fi02 pulmonary arterial pressure is higher. 
Dashed line, doxapram; solid line, saline. 

What is more relevant for this study is the effect of doxapram on the HPV response 

when the lung is not normal. In man, doxapram has been shown to attenuate the 

impairment of pulmonary function post-operatively, again, mainly via effects on 

ventilation/perfusion (V/Q) ratios (Bjork et al. 1993). However, in a model of acute lung 

injury caused by oleic acid (an experimental model of ARDS; Leeman et al. 1992b), 

which increases intrapulmonary shunt in anaesthetised dogs, doxapram increased the 

HPV response as pulmonary arterial pressure (Ppa) was enhanced at all levels of 

perfusion. Though because there was no effect on arterial blood gases it was concluded 

that blood flow was not diverted to better-ventilated areas of lung (Leeman et al. 

1992a). Another chemoreceptor agonist almitrine also increased the HPV response 

without affecting arterial blood gases (Leeman et al. 1992a). A possible reason for this 

may be that this particular model of lung injury involved more than 20% of the total lung 

volume. In anaesthetised rats with bleomycin-induced lung injury, doxapram did not 
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seem to improve V/Q mismatch as there was no change in PaOa, however, there was a 

decrease in PaCOi (Horiuchi et al. 1995). However, almitrine did seem to improve 

ventilation/perfusion inequaUty as arterial blood gases were improved (Horiuchi et al. 

1995) 

Irwin and colleagues (1997) showed an increase in the calculated physiological shunt 

ratio (calculated as the difference between capillary oxygen content and arterial oxygen 

content divided by the difference between capillary oxygen content and venous oxygen 

content) after primary thoracic blast injury in anaesthetised rats. Macroscopic post 

mortem examination of the lungs after mild to moderate primary blast injury (as in this 

study) shows patchy pulmonary contusions (disruption of the pulmonary vasculature) 

involving approximately one third of the lung (Dodd et al. 1997), resulting in wasted 

ventilation. Analysis of blood gas data from blast injured anaesthetised rats also supports 

the theory of a V/Q mismatch as Pa02 is always reduced and often PaC02 is also 

increased (see figures 4a. 10, 4b. 10 & 5.8). Doxapram administered after primary 

thoracic blast injury may improve arterial blood gases perhaps by augmenting the HPV 

response and shunting blood flow to uninjured, and hence better ventilated areas of the 

lungs. 

The aim of the present study is to test the hypothesis that doxapram can shorten the 

duration of apnoea induced by thoracic blast, and to determine the effects of this agent 

on arterial blood gases after this type of lung injury. This is addressed by determining the 

effects of immediate treatment with either doxapram or a similar volume of vehicle 

(0.9% saline) on the cardio-respiratory response to thoracic blast. 

6.2 Methods 

The experiments were conducted on terminally anaesthetised male Wistar rats (Harlan 

Olac, 243-314g body weight), which were instrumented and prepared for recording as 

described in Chapter 2, except for the following procedure involving a tracheostomy 

which was performed on all the animals in this study under alphadolone/alphaxalone 

anaesthesia (Saffan, Pitman-Moore, UK, 0.5 mL.h"' i.v.) 
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Tracheal cannulation; A 2.5 cm ventral skin incision was made over the trachea. The 

submaxillary gland was separated at the mid-ventral line and reflected bilaterally. The 

sternohyoideus was then exposed and also separated bilaterally at the mid-ventral line, 

allowing the trachea to be exposed. Thread was passed around the trachea, the distal 

thread aided the handling of the trachea and the proximal thread was used to fix the 

cannula to the trachea to minimise movement of the cannula. A small incision using 

scissors was made in the trachea, approximately 10 mm proximal to the larynx, to allow 

insertion of the cannula into the trachea. Once the tracheal cannula was inserted, the 

proximal loose loop of thread was tied firmly to fix the cannula in place. The cannula was 

then attached to a respiratory flow head (MacLab 8 s™, ADlnstruments, UK) during the 

experiment for measuring tidal volume. 

All of the incisions produced by surgical preparation were covered with saline-soaked 

tissue to prevent from drying. 

6.2.1 Experimental protocol 

Upon completion of the surgery the rats were positioned supine in the blast apparatus 

(see Chapter 2, section 2.2). All animals were positioned with the ventral thorax 3.5 cm 

below the blast nozzle (which delivers the blast wave to the animal). The animals were 

then allowed to stabilise for 1 h under alphadolone/alphaxolone anaesthesia prior to 

exposure to blast. The infusion rate of anaesthetic was adjusted within the range 19-22 
-1 -1 

mg.kg h to maintain an experimental level of anaesthesia (mild withdrawal and a 

pressor response of approximately 10 mmHg to a noxious pinch of the foot). The 

protocol shown diagrammatically in Figure 6.3 was then followed. 
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Protocol 

Blast ( I II) 

Saline (1 ) 

Doxapram (II) 

continued recording 

Time (min) 10 15 20 

Group Drug Blast Injury 

I Saline (1ml.kg-i, i.v.) + n=8 

II Doxapram (Iml.kg-'', l O m g . m l s a l i n e i.v.)+ n=8 

Figure 6.3 Diagrammatic representation of protocol followed in this study (see 
section 6.2.1 for full explanation). Plus sign (+) indicates presence of blast 
injury in that group. 

Following baseline cardiovascular, respiratory and blood gas measurements a pressure of 

1500 psi was generated in the blast apparatus and all animals received a single discharge 

from the apparatus. The cardiovascular and respiratory variables were recorded 

continuously from 2 min prior to 5 min after blast then at 10, 15 and 20 min after 

exposure to blast. Samples of arterial blood for gas/pH analysis were taken anaerobically 

immediately before blast, then at 5, 10, 15 and 20 min after blast and were replaced with 

equal volumes of heparinised saline (20 iu.mL"' heparin, Monoparin, CP 

Pharmaceuticals, UK, in 0.9% saline). 

The animals were allocated to one of 2 groups as shown in Figure 6.3. Saline (Group I) 

or doxapram (Group II) were injected as soon as possible, within 1-4 s, after blast. 

All animals were killed 20 minutes after the blast injury with an overdose of 0.5mL of 

60mg.mL"' (96-124mg.kg"') sodium pentobarbitone (Sagatal, Rhone Merieux (Ireland) 

Tallaght, Dublin) administered intravenously. The lungs were removed and weighed to 

determine Lung Weight Index (lung weight^ody weight). 
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6.3 Results 

There were no significant differences in the baseline (pre-blast) parameters between any 

of the groups studied (Table 6.1). 

Group I Group n 
n 8 8 
Bodywt(g) 256.3±7.9 270.0±7.4 
HP(ms) 140.1±4.7 143.8±3.7 
MBP(mmHg) 119.9±3.9 115.8±4.8 
Fern Q (mL.min') 1.1±0.1 l .OiO.l 
FVR 108.8±9.5 121.7±7.9 
(mmHg. min. mL"') 
Vt(mL) 1.3±0.1 1.5±0.1 
RR(bpm) 109.3±6.8 114.0±4.9 
RMV (mL.min"') 138.1±16.2 176.0±15.8 
Pa02 (mmHg) 89.3±2.6 87.9±2.2 
PaC02(mmHg) 33.7±0.5 32.3±1.5 
apH 7.39±0.01 7.40±0.01 
ABE(mM) -3.0±0.5 -4.1±0.7 
Hcrit(%) 35.0±1.3 34.3±1.5 
Temp(oC) 37.6±0.2 37.8±0.1 

Table 6.1 Baseline values for Group I (saline) and Group I I (doxapram). n denotes 
number of animals in group. Body wt; body weight, HP; heart period, 
MBP; mean arterial blood pressure. Fern Q; femoral arterial blood flow, 
FVR; femoral arterial vascular resistance, Vt; tidal volume, RR; 
respiratory rate, RMV; respiratory minute volume, Pa02; arterial oxygen 
tension, PaC02; arterial carbon dioxide tension, a pH; arterial pH, ABE; 
arterial base excess, Hcrit; haematocrit. Temp; body temperature. Data 
are presented as means±standard error of the means. 

6.3.1 The effects of saline on the cardio-respiratory response to thoracic blast 

In saline-treated animals (Group I) thoracic blast lead to a significant bradycardia, with 

heart period increasing by 289.14±27.44 ms from a pre-blast level of 140.11±4.73 ms 

(Figure 6.4), and a significant decrease in mean arterial blood pressure of 86.21±1.50 

mmHg from a pre-blast value of 119.85±3.94 mmHg (Figure 6.4). Thereafter there was a 

rapid recovery in heart period such that by 2 minutes after blast heart period was not 

significantly different to pre-blast control. The recovery in mean blood pressure was 
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much slower with MBP remaining significantly below pre-blast control until 15 minutes 

after blast. 
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Figure 6.4 Effects of 
thoracic blast on heart period 
(HP) and mean arterial blood 
pressure (MBP) in 
anaesthetised rats treated 
with 0.9% saline 
(Group I ; lmL.kg"')(*) or 
doxapram (Group I I ; 
lOmg.mL ' in ImL.kg"') (•) 
administered within l-4sec of 
blast. All animals were 
subjected to blast at time 0 
min. Data recorded 
immediately before blast (C), 
and thereafter immediately (0) 
and at 30 seconds, 1-5, 10, 15 
and 20 min after blast. Values 
are mean±S.E.M. 

In addition, blast produced a transient fall in femoral arterial blood flow of 0.67±0.07 

mL.min"' from a pre-blast control of 1.12±0.13 mL.min"' (Figure 6.5), and a significant, 

transient fall in femoral arterial vascular resistance of 56.64±26.25 mmHg.min.mL'' from 

a pre-blast level of 108.76±9.49 mmHg.min.mL'' (Figure 6.5). 
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Figure 6.5 Effects of thoracic 
blast on femoral vascular 
resistance (FVR) and femoral 
arterial blood flow (Fem Q) in 
anaesthetised rats treated with 
0.9% saline (Group I ; ImL.kg"') 
(•) or doxapram (Group I I ; 
10mg.mL"'in ImL.kg"') (•) 
administered within 1 -4sec of 
blast. All animals were subjected 
to blast at time 0 min. Data 
recorded immediately before blast 
(C), and thereafter immediately (0) 
and at 30 seconds, 1-5, 10, 15 and 
20 min after blast. Values are 
mean+S.E.M. 
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Thoracic blast (Group I) produced a significant (Student's independent / test) apnoea 

lasting 24.4±2.4 s (Figure 6.6). 
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Figure 6.6 Duration of apnoea following thoracic blast in anaesthetised rats treated 
with 0.9% saline (Group I ; ImL.kg"') (•) or doxapram (Group I I ; 
lOmg.mL'' in ImL.kg"') (•) administered within l-4sec of blast. Values 
are mean±S.E.M. 

Thirty seconds after blast tidal volume was not significantly different to pre-blast 

controls, however, respiratory rate had increased by 5.58±11.45 breaths.min' from a 

pre-blast level of 109.25±6.81 breaths.min'', hence respiratory minute volume also 

increased, by 5.2±19.0 mL.min"' from a pre-blast control of 138.1±16.2 mLmin ' (Figure 

6 .7). However, none of these values were significantly above pre-blast baseline. 
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Figure 6.7 Effects of 
thoracic blast on respiratory 
tidal volume (Vt), respiratory 
rate (Resp Rate) and 
respiratory minute volume 
(RMV) in anaesthetised rats 
treated with 0.9% saline 
(Group I ; ImL.kg"') (•) or 
doxapram (Group I I ; lOmg.mL" 
' in ImL.kg"') (•) administered 
within l-4sec of blast. All 
animals were subjected to blast 
at time 0 min. Data recorded 
immediately before blast (C), 
and thereafter immediately (0) 
and at 30 seconds, 1-5, 10, 15 
and 20 min after blast. Values 
are mean±S.E.M. 

C 0 0.5 1 2 3 4 5 10 15 20 

Time (min) 

Five minutes after blast Pa02had fallen significantly by 26.17±2.40 mmHg from a control 

pre-blast value of 89.29±2.60 mmHg (Figure 6.8). PaC02 increased following blast from 

a pre-blast level of 33.71±0.47 mmHg to 35.75±3.25 mmHg (Figure 6.8). Arterial pH 

and ABE both fell following thoracic blast by 0.06±0.05 and 4.0±1.6 mM, from a pre-

blast control of 7.39±0.01 and -3.0±0.5 mM respectively (Figures 6.8 and 6.9). 

Haematocrit also fell 5 minutes after thoracic blast by 1.0±1.1 % from a pre-blast control 

of 35.Oil .3 % (Figure 6.8). 

128 



100 

— 90 
X 

I 80 

70 

60 

50^ 

7.5 

7.45-1 

7.4 -

a. 7.35 

7.3 

7.^i 

7.2 

40 

D) 
1 » 

25 

Figure 6,8 

5 10 

Time (min) 
15 20 

40 

38 

g 36 
^ 34 

321 

30 
5 10 

Time (min) 
15 20 

Effects of thoracic blast on arterial oxygen tension (Pa02,) arterial 
carbon dioxide tension (PaC02), arterial pH (a pH) and 
haematocrit (Hct) in anaesthetised rats treated with 0.9% saline 
(Group I ; ImL.kg"') (•) or doxapram (Group I I ; lOmg.mL"' in 
ImL.kg"') (•) administered within l-4sec of blast. Data recorded 
immediately before blast (C), and 5, 10, 15 and 20 min after blast. 
Values are mean±S.E.M. 
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Figure 6.9 Effects of thoracic blast on arterial base excess (ABE) in anaesthetised 
rats treated with 0.9% saline (Group I ; ImL.kg"') (•) or doxapram (Group I I ; 
lOmg.mL"' in ImL.kg"') (•) administered within l-4sec of blast. Data recorded 
immediately before blast (C), and 5, 10, 15 and 20 min after blast. Values are 
mean±S.E.M. 
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6.3.2 The effects of doxapram on the cardio-respiratory response to thoracic blast 

Administration of doxapram (10 mg.kg'') in Group I I stimulated respiration within 0-3 s 

of injection, and significantly reduced the duration of apnoea to 6.8±1.5 s (Figure 6.6) 

compared to Group I . Thereafter a steady pattern of respiration was re-established, 

although in one animal there was a transient respiratory disturbance, i.e., during the first 

30s after blast, rapid shallow breathing 7-2Is after blast was followed by a second 

apnoea 21-25s after blast, then normal breathing resumed within a few breaths. 

By 30s after blast there were no significant differences between respiratory tidal volume 

in doxapram and saline treated animals. However, respiratory rate and consequently 

respiratory minute volume were significantly higher in those treated with doxapram 

compared to saline (Figure 6.7). Respiratory rate (Group II) increased significantly 1 

minute after blast by 29,11± 13.15 breaths.min"' from a pre-blast control of 114.04±4.91 

breaths.min"'. Thus respiratory minute volume increased by 56.00± 18.44 mL.min"' from 

a pre-blast level of 176.00±15.79 mL.min"' (Figure 6.7). Respiration rate was 

significantly higher in doxapram treated animals compared to those given saline for 1 

minute after blast, while respiratory minute volume was significantly higher in the 

doxapram group for 2 minutes after blast. 

Pa02, (Figure 6.8), and ABE (Figure 6.9) were well maintained in the doxapram-treated 

animals compared to those given saline, the latter suggesting that doxapram may have 

beneficial cardiovascular as well as respiratory effects. PaC02 was significantly lower 

(29.7±0.9 mmHg) and arterial pH significantly higher (7.43±0.01) in the doxapram 

treated group compared to the saline-treated group, for the first 5 minutes after blast, 

thereafter returning to values not significantly different from the saline-treated group 

(Figure 6.8). Haematocrit was not significantly different from the saline-treated group 

throughout the study (Figure 6.8). 

In addition to its respiratory effects doxapram markedly attenuated the hypotensive 

response to thoracic blast. Immediately after blast mean blood pressure fell significantly 

by 57.38±5.29 mmHg from a pre-blast control of 115.76±4.81 mmHg (Figure 6.4) and 
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remained significantly below pre-blast levels for only 2 minutes in this group, compared 

to 15 minutes in those given saline. In contrast, doxapram had no effect on the 

bradycardic response to thoracic blast (Figure 6.4) nor on haematocrit (Figure 6.8). 

Heart period increased by a similar amount to Group I immediately after blast, from 

143.8±3.66 ms to 381.88±35.88 ms. In the doxapram-treated animals femoral vascular 

resistance was not significantly different from the saline-treated group but femoral 

arterial blood flow was significantly higher at 0.94±0.25 mL.min"' immediately after blast 

in the doxapram-treated group (compared to Group I which was 0.73±0.14 mL.min''), 

returning to values not significantly different to those in the saline group by 30 seconds 

after the blast (Figure 6.5). The higher blood flow in the doxapram-treated group 

immediately after blast is likely to be due to the pressor effect of this drug (Figures 6.4 

and 6.5). 

A comparison of post mortem lung weight indices (calculated as lung weight divided by 

body weight) showed lung weight index is significantly lower in the doxapram treated 

group compared to the saline treated group (Student's / test; see Figure 6.10). 
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Figure 6.10 Effects of 0.9% saline (Group I ; ImL.kg'') or doxapram (Group I I ; 
lOmg.mL"' in ImL.kg"') on post mortem lung weight indices (LWI) 
following thoracic blast injury in anaesthetised rats. LWI calculated as 
post mortem lung weight/body weight. Values are meanlS.E.M. 
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6.4 Discussion 

The results of this study suggest for the first time that it is possible to pharmacologically 

reverse the apnoea induced by thoracic blast. In addition doxapram significantly 

attenuated the hypotensive response for the first 2 min after thoracic blast and prevented 

the marked falls in Pa02, arterial pH and base excess for at least 5 min after blast, but 

had no affect on the blast-induced bradycardia. This latter effect is in contrast to a study 

carried out in anaesthetised dogs (Hsu et al. 1985), where doxapram attenuated the 

bradycardia induced by xylazine (an a2-adrenoreceptor agonist), and in contrast to this 

doxapram was shown to produce a reflex bradycardia in foetal lambs which could be 

abolished by vagotomy (Bamford et al. 1986). The attenuation of the blast-induced 

hypotension by doxapram is also consistent with earlier reports of its pressor action 

(^Bruckner et al. 1977; Huon et al. 1998; Cote et al. 1992) and with the report of 

doxapram potentiating the pressor effect of xylazine (Hsu et al. 1985). As xylazine is an 

a2-adrenoreceptor agonist, then a2-adrenoreceptors may be the site of action of 

doxapram's pressor effect as Bamford and colleagues reported (1986) a rise in arterial 

blood pressure following doxapram administration to a foetal lamb whose brain was 

destroyed above the cervical spinal cord. 

The mechanism of the termination of the blast-induced apnoea by doxapram is likely to 

be stimulation of the carotid bodies thereby activating the chemoreceptor reflex and 

hence stimulating respiration. Doxapram has previously been shown to increase 

respiration by stimulating the chemoreceptors in a dose-dependent manner (Bairam et al. 

1991, 1993). The potential benefits of early termination of apnoea are obvious, the 

present study fijrther suggests that doxapram may also be exerting beneficial 

cardiovascular effects which warrant further investigation. That doxapram may exert a 

beneficial cardiovascular effect is suggested by a number of findings. Firstly, although the 

maintenance of Pa02 after treatment with doxapram could be due to the increase in 

respiratory minute volume it is clear from previous studies that increasing ventilation 

alone is not sufficient to restore Pa02 to normal values after blast. Thus, Ohnishi et al. 

(2001) showed that after blast Pa02 fell significantly despite an increase in both 

respiratory tidal volume and rate (after the initial apnoea) and consequently a significant 
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increase in respiratory minute volume compared to pre blast control values (see Figure 

6.11). 
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Figure 6.11 The 
effects of thoracic blast 
injury on respiratory 
minute volume (RMV) 
and arterial oxygen 
tension (Pa02) in 
anaesthetised rats. 
Despite a significant 
increase in RMV, 
arterial oxygen tension 
stills remains low 
following a thoracic 
blast injury. Adjacent 
data points joined for 
clarity (E. Kirkman, 
unpublished data 
abstracted from Ohnishi 
etal. 2001). 
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This fall in arterial oxygen tension despite increased respiratory minute volume may be 

due to impaired gas exchange due to pulmonary oedema following blast injury. Thus 

doxapram may be exerting an additional effect on pulmonary haemodynamics, perhaps 

reducing shunt. This would be in contrast to reports in the literature where doxapram 

was shown to increase pulmonary artery pressure (i.e. cause pulmonary vasoconstriction) 

after lung injury in dogs but did not divert blood to better venfilated areas of the lung 

(Leeman et al. 1992a). However, in that particular study the injury may have involved 

more than 20%i of lung volume and hence any increase in pulmonary arterial pressure 

would increase overall pulmonary vascular resistance and possibly lead to pulmonary 

oedema, flirther hindering gas exchange and counteracting any improvement in shunt. 

Article in German, information gained from English article. 
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Indeed, another study showed doxapram had no effect on gas exchange in piglets with 

atelectasis involving 50-75% of the lungs (Eyal et al. 1996). It seems a generalised 

increase in pulmonary arterial pressure (Ppa) and hence pulmonary vascular resistance 

(PVR) is deleterious when most of the lung is poorly ventilated. This may be as a result 

of an initiation or exacerbation of pulmonary oedema. As pulmonary oedema may also be 

seen after a more severe blast injury (Guy et al. 1998) administration of doxapram may 

be best avoided in that situation. However, after a milder blast injury, where lung damage 

is patchy post mortem macroscopic examination of the lungs after mild to moderate blast 

shows patchy contusions, Dodd et al 1997), an increase in Ppa (and thus PVR) in 

response to low PO2 may divert blood to better-ventilated areas aiding V/Q matching. 

This could potentially be the mechanism whereby doxapram increases Pa02 after mild to 

moderate blast injury in this study. To investigate this possibility flirther future studies 

need to be carried out whereby V/Q is monitored before and after doxapram 

administration following differing grades of primary blast injury to the thorax and 

coupling this with parameters such as arterial blood gases and base excess. Doxapram 

also significantly reduced lung weight index following thoracic blast. This implies an 

attenuation of a blast-induced pulmonary oedema (Zuckerman, 1940; Brown et al. 

1993), possibly via an increase in the hypoxic pulmonary vasoconstrictor response. A 

vasoconstriction in the pulmonary arterioles would lead to a decrease in capillary 

hydrostatic pressure which, due to an alteration in Starling forces, would reduce capillary 

filtrafion (see Chapter 4a, section 4a. 1.2.1) and hence any pulmonary oedema. 

Additionally, an improvement in intrapulmonary shunt and hence gas exchange, would 

reduce hypoxia and thus reduce the hypoxic trigger for an inflammatory response, again 

reducing any pulmonary oedema (see Chapter 4a, section 4a.4.1.1). 

In addition to the cardiorespiratory effects of doxapram, this respiratory stimulant may 

be exerting a beneficial systemic haemodynamic effect in the present study, in contrast to 

other agents that improve blood pressure at the expense of regional blood flow. 

Although blood flow was only transiently improved in the femoral vascular bed, the 

maintenance of arterial base excess may be due to improved tissue oxygenation, not only 

because of higher Pa02 levels but also possibly because of improved blood flow to 

metabolically active regions (e.g. the gut and kidney). This could be investigated fiarther 

in the rat using a combination of regional measurements of blood flow and tissue 
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oxygenation. Finally the time course of the studies should be extended to see whether 

any beneficial effects persist over a longer time scale, this could be combined with 

measurements of markers of secondary tissue damage such as microalbuminuria (Gosling 

et al. 1991) investigated over a range of levels of thoracic blast injury. 

6.4.1 Possible changes in chemoreceptor activity after sham blast and doxapram, and 
mechanism of action of doxapram 

The cardiorespiratory effects of doxapram (and saline) in the absence of thoracic blast 

should be investigated to adequately assess the interaction between the response to 

doxapram and that to primary blast injury. To this end, a pilot study has begun to 

determine the effects of doxapram or saline in sham blast animals. Currently there is only 

one animal in each group (saline or doxapram following sham blast). The animals in this 

pilot study were only subjected to the sound of the blast and not to the physical effect of 

the blast wave. Following sham blast, administration of saline had no cardiovascular or 

respiratory effect. However, doxapram gave an immediate increase in respiration (as 

soon as it was injected) and a small, transient vasoconstriction in the femoral vascular 

bed, followed by a transient bradycardia and hypotension as the respiratory effect waned. 

During the hypotension (following the vasoconstriction) there was a vasodilation as 

femoral flow remained constant (Figure 6.12). There are varying reports in the literature 

as to the cardiovascular effects of doxapram, with reports ranging from a modest 

increase in blood pressure with a small bradycardia (Bamford et al. 1986), to an increase 

of 49% in blood pressure with a 40.5% increase in heart rate within the first few minutes 

of administration (^Bruckner et al. 1977). However, within the same time scale as the 

bradycardia and hypotension reported in this study Mileitch and colleagues (1976) also 

reported an abrupt bradycardia and hypotension in anaesthetised and unanaesthetised 

goats which returned to, or exceeded, pre-injection values within 30 seconds. 

^ Article in German, infomiation gained from English article. 
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Figure 6,12 Original data trace of the electrocardiogram (ECG, top panel), arterial 
blood pressure (art BP), respiratory volume (Resp Vol; inspiration 
upwards), respiratory rate (Resp Rate), femoral blood flow (Fem Q), 
mean femoral blood flow (Mn Fem Q) and femoral vascular resistance 
(Fem VR) in one anaesthetised rat. The arrow denotes the point of sham 
blast administration and injection of doxapram (ImL.kg'', lOmg.mL''). 

6 .4 .2 Implications for the chemoreceptor reflex and its interaction wi th the pulmonary 
'J' reflex and the response to blast 

It was postulated in Chapter 1, section 1.5 that the pulmonary 'J' reflex may be 

responsible for the response to blast. Any reported studies on an interaction between the 

pulmonary 'J' reflex and the chemoreceptor reflex may allow comparisons with the 

response elicited in this study, the interaction between the response to blast and a 

possible doxapram-induced chemoreceptor reflex. One study showed an inhibition of the 

chemoreceptor reflex-induced increase in respiration by simultaneous pulmonary 'J' 

reflex-induced apnoea but did not comment on any cardiovascular changes (Paton, 

1997a). Another study (Paton, 1998) looked at convergence of afferent fibres from both 

these reflexes onto neurones within the NTS in a working heart-brain stem preparation in 

the mouse. It was shown that there was a degree of convergence of the pulmonary C-

fibres and chemoreceptor reflex afferent fibres within the NTS. Paton (1998) then 
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postulated that pulmonary oedema could induce a pulmonary 'J' reflex, thus reducing 

inspiratoiy drive and block the chemoreceptor reflex-induced increase in respiration. This 

could reveal the bradycardia of the primary cardiovascular response of the 

chemoreceptor reflex, which may result in a potentiation of the bradycardia from both 

reflexes. 

However, after blast in this study, doxapram shortens the apnoea i.e. still gives the 

respiratory response, but no further bradycardia than that seen in the absence of 

doxapram. One interpretation of this would be that the peripheral chemoreceptors are no 

longer effective after a blast injury (and so the peripheral chemoreceptor induced-

bradycardia is lost) and the respiratory drive comes from the central chemoreceptor 

effect of doxapram (''Romeo et a/. 1995; Scott ef al. 1977; Bamford et al. 1986). 

This suggestion, however, seems unlikely since the response to blast can produce 

reduced Pa02 andVdSZOj (Ohnishi et al. 2001). This pattern of hypoxia and hypocarbia 

is typical of a situation where the peripheral chemoreceptors are stimulated by hypoxia 

and/or acidaemia with the resultant increased ventilation driving down PaC02. The 

central chemoreceptors liinit, rather than cause, this effect since they usually respond to 

elevated PaC02, not to hypoxia or acidosis. 

To examine whether doxapram is exerting its effects via actions on the peripheral 

chemoreceptor reflex a study could be carried out on the response to the administration 

of a drug that will only act on the peripheral chemoreceptors (e.g. cyanide; CN, see Daly, 

1991), given before and after blast and sham blast, and determine whether the response 

will be similar to that of doxapram. I f the response to such a drug (e.g., cyanide) was 

different to that of doxapram then perhaps the peripheral chemoreceptor reflex is not 

involved in the mechanism of action of doxapram after blast, or the peripheral 

chemoreceptor reflex doesn't respond after blast. Further, doxapram could be injected 

close-arterially to the carotid bodies in a very small dose and the response compared to 

that obtained when the same dose is injected intravenously. 

Article in Italian, information gained from English abstract. 
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The response to doxapram injection following denervation of the peripheral 

chemoreceptors would determine whether doxapram is acting via stimulation of this 

reflex (although no information could be gained about the bradycardia from these latter 

experiments as the denervation procedure for the aortic arch chemoreceptors is likely to 

destroy the vagal innervation to the heart). The above studies would aid in determining 

whether the peripheral chemoreceptors function after blast and the mechanism of 

doxapram's actions. 

Finally, as the response to the pulmonary 'J' reflex is reminiscent of the response to 

thoracic blast (see Chapter 1, section 1.5), it would be interesting to determine whether 

the chemoreceptor reflex can generate a respiratory response during activation of the 

pulmonary 'J' reflex, and what the interaction would be on the bradycardia. The 

bradycardia due to the pulmonary 'J' reflex is likely to use a different population of 

cardiac vagal motorneurones than that due to the peripheral chemoreceptor reflex as the 

bradycardia induced by the pulmonary 'J' reflex cannot be modulated by respiration 

(Daly & Kirkman, 1988), however, the chemoreceptor-induced bradycardia is modulated 

by changes in respiration (Daly & Kirkman, 1988; Daly et al. 1988). Paton (1997) 

showed that the chemoreceptor-induced increase in respiration is inhibited by a 

simultaneous pulmonary 'J' reflex-induced apnoea, but no cardiovascular changes were 

commented on. Experiments involving simultaneous stimulation of the pulmonary 'J' 

reflex and peripheral chemoreceptor reflex could be compared to the above experiments 

involving blast/sham blast as this could potentially give some indication of the mechanism 

of the response to blast. 

To summarise, preliminary evidence seems to confirm previous studies that 

administration of doxapram (in the absence of blast injury) stimulates respiration, but in 

this study doxapram gave a depressor response (however, it must be stressed that n=\). 

This is contrast to its reported pressor actions in the literature (Huon et al. 1998; Cote et 

al. 1992; ^Bruckner et al. 1977), and its attenuation of the blast-induced hypotension in 

this study. 

" Article in German, information gained from English article. 
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The main results from this study show that administration of doxapram following 

thoracic blast can pharmacologically reverse the reflex apnoea that results from this 

injury, and maintain arterial blood gases possibly by an improvement in ventilation and 

perfusion matching in the lungs. Additional to this, doxapram appeared to attenuate the 

hypotensive response to primary blast injury and may have reduced a blast-induced 

pulmonary oedema (as doxapram reduced lung weight index), but had no effect on the 

bradycardia. 
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Discussion 

This thesis aimed to address several questions which are chnically relevant to blast 

victims. The following paragraphs will re-cap on these aims before going on to 

summarise the findings of this thesis and outline any fiature experiments that need to be 

carried out. How this information may be used in the assessment and treatment of the 

blast-injured casuahy will also be discussed in this chapter. 

7.1 Summary of the Aims and Results of this Thesis 

The initial aim of this thesis was to determine the effect of thoracic blast injury on the 

cardiorespiratory response to haemorrhage, and whether these responses, or their 

interaction, are modified by morphine. The results showed that thoracic blast injury 

augments the bradycardic, hypotensive second phase of the response to haemorrhage, 

while morphine attenuates this effect. 

Subsequent chapters addressed the topic of fluid resuscitafion of the hypovolemic 

blast-injured casualty. The cardiovascular effects of various isotonic fluids were 

compared to the increasingly popular hypertonic saline/dextran for resuscitation early 

and late after a thoracic blast injury and haemorrhage. Results of these studies showed 

adequate restoration of cardiovascular parameters with isotonic solutions, regardless of 

the timing of the resuscitation. However, resuscitafion with HSD proved ineffective 

both early and late after a blast injury and haemorrhage in anaesthetised rats. Therefore 

the succeeding chapter investigated various hypertonic solutions in comparison to HSD, 

however, the same conclusion was derived; HSD was the only solufion which failed to 

maintain arterial blood pressure, heart rate or femoral blood flow for longer than 5 

minutes. 

The final aim in this thesis was to investigate a potential pharmacological means of 

modifying the reflex apnoea that occurs as part of the response to thoracic blast injury. 

The respiratory sfimulant doxapram proved to significantly attenuate the blast-induced 

apnoea, as well as improving arterial blood gases, reducing lung weight index and 

attenuating the hypotensive response to thoracic blast injury. 
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7,2 Potential Future Studies 

In addition to those potential future studies mentioned in the discussion sections of the 

experimental chapters (sections 3.4, 3.4.1, 4a.4, 4a.4.1, 5.4, 6.4, 6.4.1 and 6.4.2) further 

studies could be carried out, e.g., to determine whether opioids modify the doxapram-

induced attenuation of the apnoeic and hypotensive response to blast. This would also 

allow us to determine whether the blast-induced bradycardia is modified by morphine 

together with doxapram as it is not affected by either alone. 

A full haemodynamic assessment is needed after blast (see Chapter 3, section 3.4.1). 

Blood flow in several different organs at the same timepoints following a blast injury 

could be assessed using different coloured fluorescent microspheres (Schimmel et al 

2001). This technique could also be used to assess haemodynamics after blast and 

doxapram administration. A bolus of doxapram will attenuate the blast-induced 

hypotension but this is short lasting. Clinically a continuous infusion of doxapram may 

therefore maintain BP for longer, however, this may be at the expense of blood flow to 

vital organs. These organs could also be assayed for markers of tissue damage post 

mortem, such as liver proteases, which are known to be increased following injury 

(Ri;:F). 

As mentioned earlier in this chapter, there is an obvious need for the assessment of the 

integrity of the baroreflex to be carried out following blast injury as the blast-induced 

hypotension is associated with a bradycardia rather than a tachycardia which would be 

expected were the baroreflex functioning normally. A preliminary study is currently 

underway. The baroreflex is assessed using the phenylephrine pressor test before and at 

several timepoints following a blast injury in the anaesthetised rat. Preliminary results 

show that rather than the baroreflex being inhibited by the response to blast as one 

might assume from looking at the results of the blast and haemorrhage experiments 

(Chapter 3, phase 1 of the response to haemorrhage, which is due to the actions of the 

baroreflex, is absent; Sawdon et al In press) it looks as though baroreflex sensitivity 

may actually be increased. This is consistent with a report by Little and colleagues 

(1984) whereby baroreflex sensitivity is increased during phase 2 of the response to a 

progressive simple haemorrhage. During this phase there is also a bradycardia 

associated with a fall in blood pressure. However, the preliminary findings are in 

contrast to another type of injury, musculo-skeletal tissue injury, where baroreflex 
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sensitivity is decreased in man (Anderson, Little & Irving, 1990) and rat (Redfern et al. 

1984). 

During blast injury the vagally mediated bradycardia is short lasting (over in 5-15 

minutes) but powerfijl. Therefore, blast injuries may lead to the development of 

hypoxia. The defence reaction can be activated by hypoxia (Marshall, 1987) but this 

would cause a tachycardia and hypertension and not the bradycardia and hypotension 

seen with blast. It may be possible that the hypoxia driven defence reaction is overcome 

by blast, i.e., a bradycardia and hypotension become apparent and not the tachycardia 

and hypertension. Some anaesthetics (chloralose, urethane and barbiturates) are known 

to inhibit activation of the defence reaction from carotid body stimulation. However, the 

animals used in this thesis are anaesthetised with Saffan (an anaesthetic shown not to 

interfere with the cardiovascular component of the defence reaction) and so this may be 

allowing some defence reaction to come through (Timms, 1981) and is actually 

dampening the blast-induced bradycardia, i.e., in conscious man there may be an even 

more powerflil bradycardia, perhaps fatal. After a model of head injury, where a 

pressure of 300 psi is administered to the parietal cortex (G. McMahon & E. Kirkman, 

unpublished study), there is a longer apnoea and no lung oedema with sodium 

pentobarbitone (Sagatal) anaesthetised rats compared to those anaesthetised with Saffan 

were there is a shorter apnoea and oedema of the lung severe enough to kill the majority 

of the animals. Future experiments should therefore include blast work under differing 

anaesthetics, comparing the magnitude of the bradycardias. 

In a recent study looking at a model of musculo-skeletal tissue injury (bilateral hindlimb 

ischaemia) and haemorrhage in rats, whilst measuring blood flow in the superior 

mesenteric artery (SMA), it became apparent that in the group subjected to haemorrhage 

alone, phase 1 of the response to simple progressive haemorrhage was absent (Sawdon 

et al. 2001). This is reminiscent of the response to haemorrhage on a background of 

thoracic blast injury. What may be occurring in that study is a haemorrhage response on 

top of another type of injury, i.e., to the viscera (the intestines are displaced laterally to 

allow access to the SMA) in the same way that blast may be altering the response to 

haemorrhage due to movement of the viscera by the blast wave. Determining the 

response to haemorrhage following an abdominal blast could assess this. 
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7.3 Potential Treatment of the Blast-Injured Victim 

The new information gained from the work covered by this thesis could potentially lead 

to improved assessment and treatment of the blast-injured victim. It has been shown that 

the response to blast modifies that to a subsequent haemorrhage such that the first 

compensatory phase of the response to blood loss is absent (Chapter 3; Sawdon et al. 

2002) and so the volume of blood lost in these patients may be overestimated and hence 

too much fluid may be administered upon resuscitation. Administration of morphine for 

analgesia to a blast victim will alter the response to blood loss yet again, potentially 

masking any internal bleeding. 

I f the patient requires fluid resuscitation at some point, the clinician (or military 

personnel treating the victim in the field) will now be aware of the possible hazards 

associated with resuscitation with hypertonic saline/dextran. Therefore, one of the other 

fluids may be chosen such as hydroxyethyl starch or whole blood i f in a clinical setting, 

or a hypertonic solution other than HSD i f treatment is being administered out in the 

field. 

I f the patient is seen whilst still in the apnoeic stage of the response to blast injury, this 

cessation of breathing can be halted pharmacologically by the administration of the 

respiratory stimulant doxapram. This will also attenuate the hypotension and improve 

arterial blood gases as well as, theoretically at least, aiding oxygen delivery to the 

tissues thereby reducing ischaemic damage to organs and attenuating any lung oedema, 

possibly reducing the risk of developing adult respiratory distress syndrome (ARDS). 

The combined insults of a reduced cardiac output due to blood loss and lung damage 

from a blast injury is likely to exacerbate the inflammatory response (see Chapter 4a, 

section 4a.4.1 and 4a.4.2). However, i f future studies show an up-regulation or early 

expression of markers of inflammation such as ICAM-1 and VCAM-1 or 

microalbuminuria following blast injury and haemorrhage, then with prompt detection 

of these markers, early intervention may be possible, thus reducing any further risk of 

other clinical sequale such as aduh respiratory distress syndrome. . 

The combined results of this thesis show potential for improvements in the assessment 

and treatment of the hypovolaemic blast-injured patient. However, it must be stressed 
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that the injuries investigated in this thesis are well-defined injuries in anaesthetised rats, 

and further clinical trials are required before the results can be ufilised in man. 
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11 Summary of Abbreviations 

a 

KC 

n'i 

5HT 

ABE 

ANOVA 

ARDS 

ATLS 

BP 

BV 

CN 

CVM 

FemQ 

Fi02 

FVR 

Hct 

HES 

HHES 

HP 

HPV 

HS 

HSD 

i.a. 

i.v. 

ICAM-1 

IL 

Kc 

LWI 

MBP 

MmHg 

n 

Capillary reflection coefficient (sigma) 

Capillary oncotic pressure 

Interstitial oncotic pressure 

5 Hydroxytryptamine 

Arterial base excess 

Analysis of Variance 

Adult Respiratory Distress Syndrome 

Advanced Trauma Life Support 

Blood pressure 

Blood volume 

Cyanide 

Cardiac vagal motorneuron 

Arterial femoral blood flow 

Fraction of inspired oxygen 

Femoral vascular resistance 

Haematocrit 

Hydroxyethyl starch 

Hypertonic hydroxyethyl starch 

Heart period 

Hypoxic pulmonary vasoconstrictiori 

Hypertonic saline 

Hypertonic saline/dextran 

Intra-arterially 

Intra-venously 

Intracellular adhesion molecule-1 

Interleukin 

Capillary filtration coefficient 

Lung Weight Index 

Mean blood pressure 

milhmeters of mercury 

Sample size 
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N20 Nitrous oxide 

NA Nucleus ambiguus 

NTS Nucleus tractus solitarius 

PaC02 Arterial carbon dioxide tension 

Pa02 Arterial oxygen tension 

PBG Phenylbiguanide 

Pc Capillary hydrostatic pressure 

pH Arterial pH 

Pi Interstitial hydrostatic pressure 

Ppa Pulmonary arterial pressure 

psi Pounds per square inch 

PVR Pulmonary vascular resistance 

RL Ringers lactate 

RMV Respiratory minute volume 

RR Respiratory rate 

RVLM Rostral ventrolateral medulla 

SEM Standard error of the mean 

Temp Body temperature 

TPR Total peripheral resistance 

V/Q Ventilation to perfusion ratio 

VCAM-1 Vascular cell adhesion molecule-1 

Vt Tidal volume 
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